Direct spray pyrolysis to form CuInS2 (CIS) on molybdenum substrate in ambient environment has been a challenge because of the ease of Mo oxidation at low temperatures. MoO2 formation affects the wettability of precursor solution during spray pyrolysis, which degrades the uniformity of CIS film and acts as a resistive layer for carrier transport. In this paper, Mo oxidation was prevented by using excess sulfur in the precursor solution under a gradual heating and spray process. A thin precursor layer was initially deposited as a barrier layer to prevent oxygen adsorption on Mo surface before the temperature was increased further to form polycrystalline CuInS2. The CuIn(S,Se)2 (CISSe) device fabricated from selenization of the spray-pyrolyzed CIS film exhibited a power conversion efficiency (PCE) of 5.9%. The simple spray method proposed here can be used to deposit a variety of Cu-based chalcopyrite precursor to produce high-quality thin film solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.