Severe acute respiratory syndrome (SARS) led to a life-threatening form of atypical pneumonia in late 2002. Following that, Middle East Respiratory Syndrome (MERS-CoV) has recently emerged, killing about 36% of patients infected globally, mainly in Saudi Arabia and South Korea. Based on a scaffold we reported for inhibiting neuraminidase (NA), we synthesized the analogues and identified compounds with low micromolar inhibitory activity against 3CL(pro) of SARS-CoV and MERS-CoV. Docking studies show that a carboxylate present at either R(1) or R(4) destabilizes the oxyanion hole in the 3CL(pro). Interestingly, 3f, 3g and 3m could inhibit both NA and 3CL(pro) and serve as a starting point to develop broad-spectrum antiviral agents.
High-throughput screening was performed on ∼6800 compounds to identify KR-72039 as an inhibitor of H1N1 and H5N1 neuraminidases (NAs). Structure-activity relationship studies led to 3e, which inhibited H5N1 NA with an IC50 of 2.8 μM and blocked viral replication. Docking analysis shows that compounds bind to loop-430 around the NA active site. Compound 3l additionally inhibited H7N9 NA, making it a dual inhibitor of N1- and N2-type NAs.
A series of 2-(benzylthio)-6-oxo-4-phenyl-1,6-dihydropyrimidine as SARS-CoV 3CL protease inhibitors were developed and their potency was evaluated by in vitro protease inhibitory assays. Two candidates had encouraging results for the development of new anti-SARS compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.