Type B dihydrofolate reductases (DfrB) are intrinsically highly resistant to the widely used antibiotic trimethoprim, posing a threat to global public health. The ten known DfrB family members have been strongly associated with genetic material related to the application of antibiotics. Several dfrB genes were associated with multidrug resistance contexts and mobile genetic elements, integrated both in chromosomes and plasmids. However, little is known regarding their presence in other environments. Here, we investigated the presence of dfrB beyond the traditional areas of enquiry by conducting metagenomic database searches from environmental settings where antibiotics are not prevalent. Thirty putative DfrB homologues that share 62 to 95% identity with characterized DfrB were identified. Expression of ten representative homologues verified trimethoprim resistance in all and dihydrofolate reductase activity in most. Contrary to samples associated with the use of antibiotics, the newly identified dfrB were rarely associated with mobile genetic elements or antibiotic resistance genes. Instead, association with metabolic enzymes was observed, suggesting an evolutionary advantage unrelated to antibiotic resistance. Our results are consistent with the hypothesis that multiple dfrB exist in diverse environments from which dfrB were mobilized into the clinically relevant resistome. Our observations reinforce the need to closely monitor their progression.
We present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features. No characterized protein shares sequence homology with DfrB enzymes; how they evolved to emerge in the modern resistome is unknown. In this work, we identify DfrB homologues from a database of putative and uncharacterized proteins. These proteins include an SH3-like fold homologous to the DfrB enzymes, embedded in a variety of additional structural domains. By means of functional, structural and biophysical characterization, we demonstrate that these distant homologues and their extracted SH3-like fold can display dihydrofolate reductase activity and confer TMP resistance. We provide evidence of tetrameric assembly and catalytic mechanism analogous to that of DfrB enzymes. These results contribute, to our knowledge, the first insights into a potential evolutionary path taken by this SH3-like fold to emerge in the modern resistome following introduction of TMP.
This article is part of the theme issue ‘Reactivity and mechanism in chemical and synthetic biology’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.