The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an in vivo mouse model, after 4 weeks in one group and after 12 weeks in the other. The explants were compared using analytical methods, evaluating microscopic images, and a histology analysis. The kinetics of the degradation and remodeling of explants were found to be greatly dependent on the concentration and type of crosslinker; generally, divinyl sulfone (DVS) resists degradation more effectively compared to butanediol diglycidyl ether (BDDE). The presence of fibrin enhances the formation of blood vessels, and the infiltration of cells and extracellular matrix. In summary, if the aim is to create a soft tissue implant with easier degradation of the HA content, then the use of 2–5% BDDE is found to be optimal. For a longer degradation time, 5% DVS is the more suitable crosslinker. The use of fibrin was found to support the biological process of remodeling, while keeping the advances of HA in void filling, enabling the parallel degradation and remodeling processes.
Fibrin membranes are widely used in regenerative medicine because they are biocompatible, biodegradable, contain growth factors, and support cell attachment. Most commonly they are produced from serum, but they can also be isolated from activated plasma. To increase the fibrinogen concentration of plasma, cryoprecipitate isolation is a possible solution. In this work, cryoprecipitate was prepared from fresh frozen plasma, isolated by plasmapheresis. The concentration of cellular elements, fibrinogen, total protein, and immunoglobulins among others was measured in different concentrations of cryoprecipitates. After activation with Ca-gluconate, fibrin membranes were produced in different thicknesses, and human mesenchymal stem cells were seeded onto the membranes. They were visualized by live-dead staining and their viability was determined by XTT. The platelet-derived growth factor AB content was quantified by ELISA. Our results showed that fibrinogen and platelet concentration can be multiplied in plasma by cryoprecipitate isolation, which affects the thickness and slightly the growth factor content of the membranes. According to live-dead staining, the thickness of the membranes does not influence cell attachment, and XTT measurement did not reveal a significant difference in cell attachment capacity either; however, a growing trend could be observed in the case of some membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.