Journal Pre-proof J o u r n a l P r e -p r o o f 2 GIS-based Spatial Modeling of COVID-19 Incidence Rate in the Continental United States AbstractDuring the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been announced, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model; these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R 2 : 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.
Prediction of the COVID-19 incidence rate is a matter of global importance, particularly in the United States. As of 4 June 2020, more than 1.8 million confirmed cases and over 108 thousand deaths have been reported in this country. Few studies have examined nationwide modeling of COVID-19 incidence in the United States particularly using machine-learning algorithms. Thus, we collected and prepared a database of 57 candidate explanatory variables to examine the performance of multilayer perceptron (MLP) neural network in predicting the cumulative COVID-19 incidence rates across the continental United States. Our results indicated that a single-hidden-layer MLP could explain almost 65% of the correlation with ground truth for the holdout samples. Sensitivity analysis conducted on this model showed that the age-adjusted mortality rates of ischemic heart disease, pancreatic cancer, and leukemia, together with two socioeconomic and environmental factors (median household income and total precipitation), are among the most substantial factors for predicting COVID-19 incidence rates. Moreover, results of the logistic regression model indicated that these variables could explain the presence/absence of the hotspots of disease incidence that were identified by Getis-Ord Gi* (p < 0.05) in a geographic information system environment. The findings may provide useful insights for public health decision makers regarding the influence of potential risk factors associated with the COVID-19 incidence at the county level.
According to the Substance Abuse and Mental Health Services Administration, about 21 million adults in the US experience a major depressive episode. Depression is considered a primary risk factor for suicide. In the US, about 19.5% of adults are reported to be experiencing a depressive disorder, leading to over 45,000 deaths (14.0 deaths per 100,000) due to suicides. To our knowledge, no previous spatial analysis study of depression relative to the social vulnerability index has been performed across the nation. In this study, county-level depression prevalence and indicators were compiled. We analysed the geospatial distribution of depression prevalence based on ordinary least squares, geographically weighted regression, and multiscale geographically weighted regression models. Our findings indicated that the multiscale model could explain over 86% of the local variance of depression prevalence across the US based on per capita income, age 65 and older, belonging to a minority group (predominantly negative impacts), and disability (mainly positive effect). This study can provide valuable insights for public health professionals and policymakers to address depression disparities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.