Objectives The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable for clinical diagnosis of COVID-19 patients. Methods In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training, test, and external validation set, respectively, to implement the full-dose prediction technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT images. The quality of predicted CT images was assessed using root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Scores ranging from 1 to 5 were assigned reflecting subjective assessment of image quality and related COVID-19 features, including ground glass opacities (GGO), crazy paving (CP), consolidation (CS), nodular infiltrates (NI), bronchovascular thickening (BVT), and pleural effusion (PE). Results The radiation dose in terms of CT dose index (CTDI vol ) was reduced by up to 89%. The RMSE decreased from 0.16 ± 0.05 to 0.09 ± 0.02 and from 0.16 ± 0.06 to 0.08 ± 0.02 for the predicted compared with ultra-low-dose CT images in the test and external validation set, respectively. The overall scoring assigned by radiologists showed an acceptance rate of 4.72 ± 0.57 out of 5 for reference full-dose CT images, while ultra-low-dose CT images rated 2.78 ± 0.9. The predicted CT images using the deep learning algorithm achieved a score of 4.42 ± 0.8. Conclusions The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose CT images with acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial radiation dose reduction. Key Points • Ultra-low-dose CT imaging of COVID-19 patients would result in the loss of critical information about lesion types, which could potentially affect clinical diagnosis. • Deep learning–based prediction of full-dose from ultra-low-dose CT images for the diagnosis of COVID-19 could reduce the radiation dose by up to 89%. • Deep learning algorithms failed to recover the correct lesion structure/density for a number of patients considered outliers, and as such, further research and development is warranted to address these limitations. Electronic supplementary material The online version of this article (10.1007/s00330-020-07225-6) contains supplementary material, which is available to authorized users.
Objective: In this large multi-institutional study, we aimed to analyze the prognostic power of computed tomography (CT)-based radiomics models in COVID-19 patients. Methods: CT images of 14,339 COVID-19 patients with overall survival outcome were collected from 19 medical centers. Whole lung segmentations were performed automatically using a previously validated deep learning-based model, and regions of interest were further evaluated and modified by a human observer. All images were resampled to an isotropic voxel size, intensities were discretized into 64-binning size, and 105 radiomics features, including shape, intensity, and texture features were extracted from the lung mask. Radiomics features were normalized using Z-score normalization. High-correlated features using Pearson (R2>0.99) were eliminated. We applied the Synthetic Minority Oversampling Technique (SMOT) algorithm in only the training set for different models to overcome unbalance classes. We used 4 feature selection algorithms, namely Analysis of Variance (ANOVA), Kruskal-Wallis (KW), Recursive Feature Elimination (RFE), and Relief. For the classification task, we used seven classifiers, including Logistic Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost (AB), Naive Bayes (NB), and Multilayer Perceptron (MLP). The models were built and evaluated using training and testing sets, respectively. Specifically, we evaluated the models using 10 different splitting and cross-validation strategies, including different types of test datasets (e.g. non-harmonized vs. ComBat-harmonized datasets). The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were reported for models evaluation. Results: In the test dataset (4301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83(sd:0.01) (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + RF classifier. In RT-PCR-only positive test sets (3644), similar results were achieved, and there was no statistically significant difference. In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in highest performance of AUC, reaching 0.83 (sd:0.01) (CI95%: 0.81-0.85), with sensitivity and specificity of 0.77 and 0.74, respectively. At the same time, ComBat harmonization did not depict statistically significant improvement relevant to non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and LR classifier resulted in the highest performance of AUC (0.80 (sd:0.084)) with sensitivity and specificity of 0.77 (sd:0.11) and 0.76 (sd: 0.075), respectively. Conclusion: Lung CT radiomics features can be used towards robust prognostic modeling of COVID-19 in large heterogeneous datasets gathered from multiple centers. As such, CT radiomics-based model has significant potential for use in prospective clinical settings towards improved management of COVID-19 patients.
We present a deep learning (DL)‐based automated whole lung and COVID‐19 pneumonia infectious lesions (COLI‐Net) detection and segmentation from chest computed tomography (CT) images. This multicenter/multiscanner study involved 2368 (347′259 2D slices) and 190 (17 341 2D slices) volumetric CT exams along with their corresponding manual segmentation of lungs and lesions, respectively. All images were cropped, resized, and the intensity values clipped and normalized. A residual network with non‐square Dice loss function built upon TensorFlow was employed. The accuracy of lung and COVID‐19 lesions segmentation was evaluated on an external reverse transcription‐polymerase chain reaction positive COVID‐19 dataset (7′333 2D slices) collected at five different centers. To evaluate the segmentation performance, we calculated different quantitative metrics, including radiomic features. The mean Dice coefficients were 0.98 ± 0.011 (95% CI, 0.98–0.99) and 0.91 ± 0.038 (95% CI, 0.90–0.91) for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 0.03 ± 0.84% (95% CI, −0.12 to 0.18) and −0.18 ± 3.4% (95% CI, −0.8 to 0.44) for the lung and lesions, respectively. The relative volume difference for lung and lesions were 0.38 ± 1.2% (95% CI, 0.16–0.59) and 0.81 ± 6.6% (95% CI, −0.39 to 2), respectively. Most radiomic features had a mean relative error less than 5% with the highest mean relative error achieved for the lung for the range first‐order feature (−6.95%) and least axis length shape feature (8.68%) for lesions. We developed an automated DL‐guided three‐dimensional whole lung and infected regions segmentation in COVID‐19 patients to provide fast, consistent, robust, and human error immune framework for lung and pneumonia lesion detection and quantification.
Primary non-Hodgkin’s lymphoma of the cranial vault is extremely rare. This case report presents a 42-year-old man with a painless subcutaneous scalp mass which extended intracranially associated with recent mild headache. Initial computed tomography and magnetic resonance imaging revealed two lesions emanating from the skull. Biopsy revealed a diagnosis of diffuse large B cell lymphoma (DLBCL). A thorough work-up revealed no other point of involvement. This case is concerned about considering lymphoma in the differential diagnosis of calvarial lesions with both intra- and extra cranial extensions but without obvious intervening bony destruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.