Developing appropriate cell culturing techniques to populate scaffolds has become a great challenge in tissue engineering. This work describes the use of spinner flask dynamic cell cultures to populate hydroxyapatite microcarriers for bone tissue engineering. The microcarriers were obtained through the emulsion of a self-setting aqueous α-tricalcium phosphate slurry in oil. After setting, hydroxyapatite microcarriers were obtained. The incorporation of gelatin in the liquid phase of the α-tricalcium phosphate slurry allowed obtaining hybrid gelatin/hydroxyapatite-microcarriers. Initial cell attachment on the microcarriers was strongly influenced by the speed of the dynamic culture, achieving higher attachment at low speed (40 r/min) as compared to high speed (80 r/min). Under moderate culture speeds (40 r/min), the number of cells present in the culture as well as the number of microcarrier-containing cells considerably increased after 3 days, particularly in the gelatin-containing microcarriers. At longer culture times in dynamic culture, hydroxyapatite-containing microcarriers formed aggregates containing viable and extracellular matrix proteins, with a significantly higher number of cells compared to static cultures.
a b s t r a c tIn the present study, production of tantalum porous scaffolds using the space holder technique was performed. The effect of size and content of sodium chloride particles, used as space holder, as well as compacting pressure on foam structure and mechanical properties have been investigated. The morphological characterization was carried out by means of scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and micro-CT technique. The relationship between the elastic modulus and yield strength of the tantalum porous scaffold and the pore structure was evaluated. Space holder technique allows obtaining tantalum open-cell structure (70% of porosity) and modulus of elasticity similar to cancellous bone, with reproducible processability into three-dimensional structures and reasonable manufacturing costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.