A bloom filter is an extremely useful tool applicable to various fields of electronics and computers; it enables highly efficient search of extremely large data sets with no false negatives but a possibly small number of false positives. A counting bloom filter is a variant of a bloom filter that is typically used to permit deletions as well as additions of elements to a target data set. However, it is also sometimes useful to use a counting bloom filter as an approximate counting mechanism that can be used, for example, to determine when a specific web page has been referenced more than a specific number of times or when a memory address is a “hot” address. This paper derives, for the first time, highly accurate approximate false positive probabilities and optimal numbers of hash functions for counting bloom filters used in count thresholding applications. The analysis is confirmed by comparisons to existing theoretical results, which show an error, with respect to exact analysis, of less than 0.48% for typical parameter values.
Consider a two-dimensional rectangular region guarded by a set of sensors, which may be smart networked surveillance cameras or simpler sensor devices. In order to evaluate the level of security provided by these sensors, it is useful to find and evaluate the path with the lowest level of exposure to the sensors. Then, if desired, additional sensors can be placed at strategic locations to increase the level of security provided. General forms of these two problems are presented in this paper. Next, the minimum exposure path is found by first using the sensing limits of the sensors to compute an approximate “feasible area” of interest, and then using a grid within this feasible area to search for the minimum exposure path in a systematic manner. Two algorithms are presented for the minimum exposure path problem, and an additional subsequently executed algorithm is proposed for sensor deployment. The proposed algorithms are shown to require significantly lower computational complexity than previous methods, with the fastest proposed algorithm requiring O(n2.5) time, as compared to O(mn3) for a traditional grid-based search method, where n is the number of sensors, m is the number of obstacles, and certain assumptions are made on the parameter values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.