Eco-drive is a widely used concept. It can improve fuel economy for different driving behaviors such as vehicle acceleration or accelerator pedal operation, deceleration or coasting while slowing down, and gear shift timing difference. The feasibility of improving the fuel economy of urban buses by applying eco-drive was verified by analyzing data from drivers who achieved high fuel efficiencies in urban buses with a high frequency of acceleration/deceleration and frequent operation. The items that were monitored for eco-drive were: rapid take-off/acceleration/deceleration, accelerator pedal gradient, coasting rate, shift indicator violation, average engine speed, over speed, and gear shifting under low-end engine speed. The monitoring method for each monitored item was set up, and an index was produced using driving data. A fuel economy prediction model was created using machine learning to determine the contribution of each index to the fuel economy. Furthermore, the contribution of each monitoring item was analyzed using the prediction model explainer. Accordingly, points (defined as the eco-drive score) were allocated for each monitoring item. It was verified that this score can represent the eco-drive characteristics based on the relationship between the score and fuel economy. In addition, it resulted in an average annual fuel economy improvement of 12.1%.
: This paper focuses on cooling fan control by using a magnetic clutch type for the improvement of fuel economy on a heavy city bus. In general, Heavy duty vehicles use viscous clutch type cooling fan which has some disadvantages, such as slow response, wide temperature variation of engine coolant water. But a magnetic clutch type cooling fan can be controlled electronically so the engine coolant temperature can be precisely controllable and this effects could be used to reduce fuel consumption. A control system for applying the magnetic clutch type cooling fan was developed in this study and applied to the real field test and chassis dynamometer test. The result showed well controlled coolant temperature and enhancement of fuel economy. 기계식 냉각팬 클러치 동작은 냉각수 흐름을 제
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.