This study aims to explore the wear performance of maraging 18Ni-300 steel, fabricated via laser powder bed fusion (LPBF). The building direction dependence of wear resistance was investigated with various wear loads and in terms of ball-on-disk wear tests. The effect of direct aging heat treatment, i.e. aging without solution heat treatment, on the wear performance was investigated by comparing the wear rates of directly aged samples, followed by solution heat treatment. The effect of counterpart material on the wear performance of the maraging steel was studied using two counterpart materials of bearing steel and ZrO2 balls. When the bearing steel ball was used as the counterpart material, both the as-built and heat-treated maraging steel produced by the LPBF showed pronounced building direction dependence on their wear performance when the applied wear load was sufficiently high. However, when the ZrO2 ball was used as the counterpart material, isotropic wear resistance was reported. The maraging steel produced by the LPBF demonstrated excellent wear resistance, particularly when it was aging heat-treated and the counterpart material was ZrO2. The directly aged sample showed wear performance almost the same as the sample solution heat-treated and then aged, indicating that direct aging can be used as an alternative post heat treatment for tribological applications of the maraging steels produced by LPBF.
Slippery liquid-infused porous surface (SLIPS) realized on commercial materials provides various functionalities, such as corrosion resistance, condensation heat transfer, anti-fouling, de/anti-icing, and self-cleaning. In particular, perfluorinated lubricants infused in fluorocarbon-coated porous structures have showed exceptional performances with durability; however, they caused several issues in safety, due to their difficulty in degradation and bio-accumulation. Here, we introduce a new approach to create the multifunctional lubricant-impregnated surface with edible oils and fatty acid, which are also safe to human body and degradable in nature. The edible oil-impregnated anodized nanoporous stainless steel surface shows a significantly low contact angle hysteresis and sliding angle, which is similar with general surface of fluorocarbon lubricant-infused systems. The edible oil impregnated in the hydrophobic nanoporous oxide surface also inhibits the direct contact of external aqueous solution to a solid surface structure. Due to such de-wetting property caused by a lubricating effect of edible oils, the edible oil-impregnated stainless steel surface shows enhanced corrosion resistance, anti-biofouling and condensation heat transfer with reduced ice adhesion.
Among various processes for manufacturing complex-shaped metal parts, additive manufacturing is highlighted as a process capable of reducing the wastage of materials without requiring a post-process, such as machining and finishing. In particular, it is a suitable new manufacturing technology for producing AISI H13 tool steel for hot-worked molds with complex cooling channels. In this study, we manufactured AISI H13 tool steel using the laser power bed fusion (LPBF) process and investigated the effects of tempering temperature and holding time on its microstructure and mechanical properties. The mechanical properties of the sub-grain cell microstructure of the AISI H13 tool steel manufactured using the LPBF process were superior to that of the H13 tool steel manufactured using the conventional method. These sub-grain cells decomposed and disappeared during the austenitizing process; however, the mechanical properties could be restored at a tempering temperature of 500 °C or higher owing to the secondary hardening and distribution of carbides. Furthermore, the mechanical properties deteriorated because of the decomposition of the martensite phase and the accumulation and coarsening of carbides when over-tempering occurred at 500 °C for 5 h and 550 °C for 3 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.