Objective In lupus nephritis (LuN), severe tubulointerstitial inflammation (TII) predicts progression to renal failure. Severe TII is associated with tertiary lymphoid neogenesis and in situ antigen-driven clonal B cell selection. The autoantigen(s) driving in situ B-cell selection in TII are not known. This study aimed to identify the dominant driving autoantigen(s). Methods Single CD38+ or Ki-67+ B cells were laser captured from seven LuN diagnostic biopsies. Eighteen clonally expanded immunoglobulin heavy and light chain variable region pairs were cloned and expressed as monoclonal antibodies. Seven more antibodies were cloned from flow sorted CD38+ cells from an eighth biopsy. Antigen characterization was performed using a combination of confocal microscopy, ELISA, screening protoarrays, immunoprecipitation and mass spectrometry. Serum IgG titers to the dominant antigen were determined in 48 LuN and 35 non-nephritic lupus samples using purified antigen-coated arrays. Autoantigen expression was localized by immunohistochemistry and immunofluorescence on normal and LuN kidney. Results Eleven of 25 antibodies reacted with cytoplasmic structures, four reacted with nuclei, and none with dsDNA. Vimentin was the only autoantigen identified by both mass spectrometry and by protoarray. Ten of the 11 anti-cytoplasmic TII antibodies directly bound vimentin. Vimentin was highly expressed by tubulointerstitial inflammatory cells, and tested TII antibodies preferentially bound inflamed tubulointerstitium. Finally, high-titers of serum anti-vimentin antibodies were associated with severe TII (p = 0.0001). Conclusion Vimentin, an antigenic feature of inflammation, is a dominant autoantigen targeted in situ in LuN TII. This adaptive autoimmune response likely feeds forward to worsen TII and renal damage.
Purpose of review This review focuses on the latest data that elucidates the role of the NLRP3 inflammasome in kidney diseases. Recent findings The NLRP3 inflammasome is not limited by traditional microbial stimuli of innate immunity and its connection with autophagy, apoptosis, fibrosis, and pro-inflammatory cytokines has broader implications for a variety of kidney diseases. In a wide spectrum of glomerular and tubulointerstitial diseases, the NLRP3 inflammasome is upregulated in both classical immune cells such as infiltrating macrophages and resident dendritic cells as well as in renal tubular epithelial cells, and even podocytes. Inhibition of the NLRP3 inflammasome ameliorates renal injury in a variety of animal models. Interestingly, this extends to models of proteinuria, which suggests that the deleterious effect of albuminuria on the proximal tubular epithelium and podocytes is, in part, mediated by inflammasome activation. Summary Recent studies in animal models, and still limited studies in humans, suggest a broad role for inflammasome activation in renal disease. Surprisingly, individual components of the inflammasome, independent of inflammasome activation, may also contribute to progressive renal injury. Additional, studies are needed to define the relative importance of the inflammasome in specific diseases and the therapeutic opportunities afforded by targeting the inflammasome.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple genetic risk factors, high levels of interferon alpha (IFN-α), and the production of autoantibodies against components of the cell nucleus. Interferon regulatory factor 5 (IRF5) is a transcription factor which induces the transcription of IFN-α and other cytokines, and genetic variants of IRF5 have been strongly linked to SLE pathogenesis. IRF5 functions downstream of Toll-like receptors and other microbial pattern-recognition receptors, and immune complexes made up of SLE-associated autoantibodies seem to function as a chronic endogenous stimulus to this pathway. In this paper, we discuss the physiologic role of IRF5 in immune defense and the ways in which IRF5 variants may contribute to the pathogenesis of human SLE. Recent data regarding the role of IRF5 in both serologic autoimmunity and the overproduction of IFN-α in human SLE are summarized. These data support a model in which SLE-risk variants of IRF5 participate in a “feed-forward” mechanism, predisposing to SLE-associated autoantibody formation, and subsequently facilitating IFN-α production downstream of Toll-like receptors stimulated by immune complexes composed of these autoantibodies.
Background: In systemic lupus erythematosus (SLE), antibodies directed at RNA-binding proteins (anti-RBP) are associated with high serum type I interferon (IFN), which plays an important role in SLE pathogenesis. African-Americans (AA) are more likely to develop SLE, and SLE is also more severe in this population. We hypothesized that peripheral blood gene expression patterns would differ between AA and European-American (EA) SLE patients, and between those with anti-RBP antibodies and those who lack these antibodies.Methods: Whole blood RNA from 33 female SLE patients and 16 matched female controls from AA and EA ancestral backgrounds was analyzed on Affymetrix Gene 1.0 ST gene expression arrays. Ingenuity Pathway Analysis was used to compare the top differentially expressed canonical pathways amongst the sample groups. An independent cohort of 116 SLE patients was used to replicate findings using quantitative real-time PCR (qPCR).Results: Both AA and EA patients with positive anti-RBP antibodies showed over-expression of similar IFN-related canonical pathways, such as IFN Signaling (P = 1.3 × 10−7 and 6.3 × 10−11 in AA vs. EA respectively), Antigen Presenting Pathway (P = 1.8 × 10−5 and 2.5 × 10−6), and a number of pattern recognition receptor pathways. In anti-RBP negative (RBP−) patients, EA subjects demonstrated similar IFN-related pathway activation, whereas no IFN-related pathways were detected in RBP−AA patients. qPCR validation confirmed similar results.Conclusion: Our data show that IFN-induced gene expression is completely dependent on the presence of autoantibodies in AA SLE patients but not in EA patients. This molecular heterogeneity suggests differences in IFN-pathway activation between ancestral backgrounds in SLE. This heterogeneity may be clinically important, as therapeutics targeting this pathway are being developed.
Intrarenal B cells in human renal allografts indicate transplant recipients with a poor prognosis, but how these cells contribute to rejection is unclear. Here we show using single-cell RNA sequencing that intrarenal class-switched B cells have an innate cell transcriptional state resembling mouse peritoneal B1 or B-innate (Bin) cells. Antibodies generated by Bin cells do not bind donor-specific antigens nor are they enriched for reactivity to ubiquitously expressed self-antigens. Rather, Bin cells frequently express antibodies reactive with either renal-specific or inflammation-associated antigens. Furthermore, local antigens can drive Bin cell proliferation and differentiation into plasma cells expressing self-reactive antibodies. These data show a mechanism of human inflammation in which a breach in organ-restricted tolerance by infiltrating innate-like B cells drives local tissue destruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.