Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+. We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti–Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.
Rare-earth ions (REIs) doped into solid-state crystal hosts offer an attractive platform for realizing quantum interconnects that can function as quantum memories and quantum repeaters. The 4f valence electrons of REIs are shielded by 5s and 5p electrons and undergo highly coherent transitions even when embedded in host crystals. In particular, Er3+ has an optical transition in the telecom band that is suitable for low-loss communication. Recently, REIs in thin film systems have gained interest due to potential advantages in providing a flexible host crystal environment, enabling scalable on-chip integration with other quantum devices. Here, we investigate the structural and optical properties of Er-doped anatase TiO2 thin films on LaAlO3 (001) substrates. By choosing a system with minimal lattice mismatch and adjusting Er-dopant concentration, we achieve optical inhomogeneous linewidths of 5 GHz at 4.5 K. We show that 9 nm-thick buffer and capping layers can reduce the linewidth by more than 40%, suggesting a pathway to further narrowing linewidths in this system. We also identify that Er3+ ions mainly incorporate into substitutional Ti4+ sites with non-polar D2d symmetry, which makes Er dopants insensitive to the first order to local electric fields from impurities and is desirable for coherence properties of Er3+ spins.
Interlayer excitons in solid‐state systems have emerged as candidates for realizing novel platforms ranging from excitonic transistors and optical qubits to exciton condensates. Interlayer excitons have been discovered in 2D transition metal dichalcogenides, with large exciton binding energies and the ability to form various van der Waals heterostructures. Here, an oxide system consisting of a single unit cell of Mg2TiO4 on MgO (001) is proposed as a platform for hosting interlayer excitons. Using a combination of density functional theory (DFT) calculations, molecular beam epitaxy growth, and in situ crystal truncation rod measurements, it is shown that the Mg2TiO4‐MgO interface can be precisely controlled to yield an internal electric field suitable for hosting interlayer excitons. The atoms in the polar Mg2TiO4 layers are observed to be displaced to reduce polarity at the interface with the non‐polar MgO (001) surface. Such polarity‐driven atomic displacements strongly affect electrostatics of the film and the interface, resulting in localization of filled and empty band‐edge states in different layers of the Mg2TiO4 film. The DFT calculations suggest that the electronic structure is favorable for localization of photoexcited electrons in the bottom layer and holes in the top layer, which may bind to form interlayer exciton states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.