Aristolochic acid (AA), a natural product of Aristolochia plants found in herbal remedies and health supplements, is a group 1 carcinogen that can cause nephrotoxicity and upper urinary tract urothelial cell carcinoma (UTUC). Whole-genome and exome analysis of nine AA-associated UTUCs revealed a strikingly high somatic mutation rate (150 mutations/Mb), exceeding smoking-associated lung cancer (8 mutations/Mb) and ultraviolet radiation-associated melanoma (111 mutations/Mb). The AA-UTUC mutational signature was characterized by A:T to T:A transversions at the sequence motif A[C|T]AGG, located primarily on nontranscribed strands. AA-induced mutations were also significantly enriched at splice sites, suggesting a role for splice-site mutations in UTUC pathogenesis. RNA sequencing of AA-UTUC confirmed a general up-regulation of nonsense-mediated decay machinery components and aberrant splicing events associated with splice-site mutations. We observed a high frequency of somatic mutations in chromatin modifiers, particularly KDM6A, in AA-UTUC, demonstrated the sufficiency of AA to induce renal dysplasia in mice, and reproduced the AA mutational signature in experimentally treated human renal tubular cells. Finally, exploring other malignancies that were not known to be associated with AA, we screened 93 hepatocellular carcinoma genomes/exomes and identified AA-like mutational signatures in 11. Our study highlights an unusual genome-wide AA mutational signature and the potential use of mutation signatures as "molecular fingerprints" for interrogating high-throughput cancer genome data to infer previous carcinogen exposures.
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
Background Deregulated gene expression is a hallmark of cancer; however, most studies to date have analyzed short-read RNA sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. Results We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which > 66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories, are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. Conclusions Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.
Our data suggest that SETD2 is a novel GIST tumour suppressor gene associated with disease progression. Assessing SETD2 genetic status and SETD2-associated epigenomic phenotypes may guide risk stratification and provide insights into mechanisms of GIST clinical aggressiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.