Background: Polyketides are secondary metabolites of microorganisms with diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. Polyketides are synthesized by serialized reactions of a set of enzymes called polyketide synthase(PKS)s, which coordinate the elongation of carbon skeletons by the stepwise condensation of short carbon precursors. Due to their importance as drugs, the volume of data on polyketides is rapidly increasing and creating a need for computational analysis methods for efficient polyketide research. Moreover, the increasing use of genetic engineering to research new kinds of polyketides requires genome wide analysis.
Polyketides have diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. They are biosynthesized from short carboxylic acid precursors by polyketide synthases (PKSs). As natural polyketide products include many clinically important drugs and the volume of data on polyketides is rapidly increasing, the development of a database system to manage polyketide data is essential. MapsiDB is an integrated web database formulated to contain data on type I polyketides and their PKSs, including domain and module composition and related genome information. Data on polyketides were collected from journals and online resources and processed with analysis programs. Web interfaces were utilized to construct and to access this database, allowing polyketide researchers to add their data to this database and to use it easily.
MAPSI (Management and Analysis for Polyketide Synthase Type I) has been developed to offer computational analysis methods to detect type I PKS (polyketide synthase) gene clusters in genome sequences. MAPSI provides a genome analysis component, which detects PKS gene clusters by identifying domains in proteins of a genome. MAPSI also contains databases on polyketides and genome annotation data, as well as analytic components such as new PKS assembly and domain analysis. The polyketide data and analysis component are accessible through Web interfaces and are displayed with diverse information. MAPSI, which was developed to aid researchers studying type I polyketides, provides diverse components to access and analyze polyketide information and should become a very powerful computational tool for polyketide research. The system can be extended through further studies of factors related to the biological activities of polyketides.
Compounds of polyketide origin possess a wealth of pharmacological effects, including antibacterial, antifungal, antiparasitic, anticancer and immunosuppressive activities. Many of these compounds and their semisynthetic derivatives are used today in the clinic. Most of the gene clusters encoding commercially important drugs have also been cloned and sequenced and their biosynthetic mechanisms studied in great detail. The area of biosynthetic engineering of the enzymes involved in polyketide biosynthesis has recently advanced and been transferred into the industrial arena. In this work, we introduce a computational system to provide the user with a wealth of information that can be utilized for biosynthetic engineering of enzymes involved in post-PKS tailoring steps. Post-PKS tailoring steps are necessary to add functional groups essential for the biological activity and are therefore important in polyketide biosynthesis.Availability: The trial version of this system is available via WWW at http://sm.hacklib.com/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.