Background and PurposeReceptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear.Experimental ApproachGuided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants.Key ResultsAn important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide.Conclusions and ImplicationsRAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2.
We replicated the finding that a CREBRF variant is associated with increased body mass. We then built on the original findings by demonstrating the prevalence of the rs12513649 and rs373863828 variants in multiple Pacific population groups and by demonstrating that the rs373863828 variant is associated with growth in early childhood. Pacific population groups experience a disproportionately high burden of obesity, starting in early childhood. This new knowledge offers potential for evidence-based interventions aimed at establishing healthy growth trajectories from the earliest possible age.
Telomeres are repetitive DNA sequences at the end of chromosomes that function to protect chromosomes from degradation. Throughout the life course, telomere length decreases with age and is influenced by environmental factors and health conditions. This study aimed to determine the relative telomere lengths in a diverse cohort of about 4000 four-year-old children in New Zealand. Linear regression was used to investigate the relationship between telomere length, child gender, ethnicity, paternal age and deprivation. We observed substantial variation in telomere length according to sex and self-identified ethnicity. Telomere length was longer in females compared to males (coefficient of 0.042, 95% confidence interval (CI) 0.024–0.060). European children had shorter telomere than both the indigenous Māori (coefficient of 0.03, CI 0.007–0.055) and Pacific children (coefficient of 0.15, CI 0.12–0.18). The data suggest that telomere lengths are highly variable and variability between individuals arise from early age, influenced partly by sex and ethnicity. Longer telomeres in indigenous Māori and Pacific children may reflect the heritability of telomere length in genetically less complex populations. This study increases our understanding of telomere dynamics in young children since the majority of telomere studies are conducted in adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.