Abstract.A novel gland segmentation and classification scheme applied to an H&E histology image of the prostate tissue is proposed. For gland segmentation, we associate appropriate nuclei objects with each lumen object to create a gland segment. We further extract 22 features to describe the structural information and contextual information for each segment. These features are used to classify a gland segment into one of the three classes: artifact, normal gland and cancer gland. On a dataset of 48 images at 5× magnification (which includes 525 artifacts, 931 normal glands and 1,375 cancer glands), we achieved the following classification accuracies: 93% for artifacts v. true glands; 79% for normal v. cancer glands, and 77% for discriminating all three classes. The proposed method outperforms state of the art methods in terms of segmentation and classification accuracies and computational efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.