In mammalian albinism, disrupted melanogenesis in the retinal pigment epithelium (RPE) is associated with fewer retinal ganglion cells (RGCs) projecting ipsilaterally to the brain, resulting in numerous abnormalities in the retina and visual pathway, especially binocular vision. To further understand the molecular link between disrupted RPE and a reduced ipsilateral RGC projection in albinism, we compared gene expression in the embryonic albino and pigmented mouse RPE. We found that the Wnt pathway, which directs peripheral retinal differentiation and, generally, cell proliferation, is dysregulated in the albino RPE. Wnt2b expression is expanded in the albino RPE compared with the pigmented RPE, and the expanded region adjoins the site of ipsilateral RGC neurogenesis and settling. Pharmacological activation of Wnt signaling in pigmented mice by lithium (Li +) treatment in vivo reduces the number of Zic2-positive RGCs, which are normally fated to project ipsilaterally, to numbers observed in the albino retina. These results implicate Wnt signaling from the RPE to neural retina as a potential factor in the regulation of ipsilateral RGC production, and thus the albino phenotype.
Animals alter their physiological states in response to their environment. We show that the introduction of a chlorophyll metabolite, a light-absorbing pigment widely consumed in human diets, to Caenorhabditis elegans results in animals whose fat mass can be modulated by exposure to light, despite the worm consuming the same amount of food. In the presence of the chlorophyll metabolite, exposing the worms to light increased adenosine triphosphate, reduced oxidative damage, and increased median life spans, without an effect on animal reproduction. Mice fed a dietary metabolite of chlorophyll and exposed to light, over several months, showed reductions in systemic inflammation as measured by plasma α-macroglobulin. We propose that dietary chlorophyll metabolites can enable mitochondria to use light as an environmental cue, by absorbing light and transferring the energy to mitochondrial coenzyme Q.
Impaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle. We show that later in life, in the human eye, these byproducts reach levels commensurate with those of vitamin A. In mice, selectively inhibiting the formation of these byproducts, with the investigational drug C20D 3 -vitamin A, results in faster DA. In contrast, acutely increasing these ocular byproducts through exogenous delivery leads to slower DA, with otherwise preserved retinal function and morphology. Our findings reveal that vitamin A cycle byproducts alone are sufficient to cause delays in DA and suggest that they may contribute to universal age-related DA impairment. Our data further indicate that the age-related decline in DA may be tractable to pharmacological intervention by C20D 3 -vitamin A.
Purpose This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent. During the vitamin A cycle, vitamin A dimerizes, leading to vitamin A cycle byproducts, such as vitamin A dimers, in the RPE. Methods To study the consequence of vitamin A dimerization to RPE atrophic changes, we used a rodent model with accelerated vitamin A dimerization, Abca4 −/− /Rdh8 −/− mice, and the vitamin A analog C20D 3 -vitamin A to selectively ameliorate the accelerated rate of vitamin A dimerization. Results We show that ameliorating the rate of vitamin A dimerization with C20D 3 -vitamin A mitigates pathological changes observed in the prodromal phase of the most prevalent retinal degenerative diseases, including fundus autofluorescence changes, dark adaptation delays, and signature RPE atrophic changes. Conclusions Data demonstrate that the dimerization of vitamin A during the vitamin A cycle is sufficient alone to cause the prerequisite RPE atrophic changes thought to be responsible for the leading causes of irreversible blindness and that correcting the dimerization rate with C20D 3 -vitamin A may be sufficient to prevent the RPE atrophic changes. Translational Relevance Preventing the dimerization of vitamin A with the vitamin A analog C20D 3 -vitamin A may be sufficient to alter the clinical course of the most prevalent forms of blindness, including Stargardt disease and age-related macular degeneration (AMD).
Background: Aortic dissection and aneurysm are the result of altered biomechanical forces associated with structural weakening of the aortic wall caused by genetic or acquired factors. Current guidelines recommend replacement of the ascending aorta when the diameter is >5.5 cm in tricuspid aortic valve patients. Aortopathies are associated with altered wall stress and stiffness as well as endothelial cell dysfunction and synthetic vascular smooth muscle cell (VSMC) phenotype. We reported that these mechanisms are mediated by glycoxidation products [Reactive oxygen species (ROS) and Advance Glycation End products (AGE)]. This study addresses the role of glycoxidation on endothelial function and AGE-mediated aortic stiffness. Hypothesis and aims: Here we investigate how circulating glycation products infiltrate the aortic wall via AGE-mediated endothelial hyperpermeability and contribute to both VSMC synthetic phenotype and extracellular matrix (ECM) remodeling in vivo and ex vivo. We also study how RAGE antagonist peptide (RAP) can rescue the effect of AGEs in vitro and in vivo in eNOS-/- vs WT mice. Methods and results: Human ascending aortas (n=30) were analyzed for AGE, ROS, and ECM markers. In vitro glycation was obtained by treating VSMC or human and murine aortas with glyoxal. Endothelial permeability was measured under glycation treatment. Vascular stiffness was measured by a pressure myograph comparing wild-type mice in the absence of presence of glyoxal. eNOS-/- mice, a model of increased endothelial permeability, were treated for 28 days with hyperlipidemic diet and Angiotensin II (1000ng/kg/min) with or without anti-glycation treatment (RAP 20mg/kg). Echo data of aortic diameter were collected. Murine vascular stiffness was measured by a pressure myograph (n=5/group). Glycoxidation products were detected in all human aortas independently of aortic diameter, with stronger accumulation on the lumen and the adventitia layer. AGEs increased endothelial permeability, induce synthetic phenotypic switch in human VSMCs, and inhibit cell migration. RAP pre-treatment rescue the effect of glyoxal on endothelial cells. Ex vivo glycation treatment of murine arteries impacted on ECM and increased stiffness. Aortic stiffness was higher in eNOS-/- vs WT mice. Ang II-mediated aortopathies results in aortic dilation, and AGE/ROS accumulation, which is rescued by RAGE antagonist peptide treatment of eNOS-/- mice. Conclusions: Glycoxidation reaction mediates EC permeability, VSMCs phenotype, and ECM remodeling leading to dysfunctional microstructure of the ascending aorta, altered vascular stiffness and increasing aortic susceptibility to dilation and rupture. Moreover, we show that RAP can mitigate AGE-mediated endothelial hyper-permeability in vitro and impact on ascending aneurysm in vivo
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.