Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality.
Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices. In this study, we established a long-read technology-based WGS screening program of all first-episode methicillin-resistant Staphylococcus aureus (MRSA) blood infections at a major urban hospital.
Whole-genome sequencing was used to examine a persistent Enterococcus faecium bacteremia that acquired heteroresistance to three antibiotics in response to prolonged multidrug therapy. A comparison of the complete genomes before and after each change revealed the emergence of known resistance determinants for vancomycin and linezolid and suggested that a novel mutation in fabF, encoding a fatty acid synthase, was responsible for daptomycin nonsusceptibility. Plasmid recombination contributed to the progressive loss of vancomycin resistance after withdrawal of the drug.
One-third of the world’s population
carries Mycobacterium tuberculosis (Mtb), the infectious agent that causes tuberculosis (TB), and every
17 s someone dies of TB. After infection, Mtb can
live dormant for decades in a granuloma structure arising from the
host immune response, and cholesterol is important for this persistence
of Mtb. Current treatments require long-duration
drug regimens with many associated toxicities, which are compounded
by the high doses required. We phenotypically screened 35 6-azasteroid
analogues against Mtb and found that, at low micromolar
concentrations, a subset of the analogues sensitized Mtb to multiple TB drugs. Two analogues were selected for further study
to characterize the bactericidal activity of bedaquiline and isoniazid
under normoxic and low-oxygen conditions. These two 6-azasteroids
showed strong synergy with bedaquiline (fractional inhibitory concentration
index = 0.21, bedaquiline minimal inhibitory concentration = 16 nM
at 1 μM 6-azasteroid). The rate at which spontaneous resistance
to one of the 6-azasteroids arose in the presence of bedaquiline was
approximately 10–9, and the 6-azasteroid-resistant
mutants retained their isoniazid and bedaquiline sensitivity. Genes
in the cholesterol-regulated Mce3R regulon were required for 6-azasteroid
activity, whereas genes in the cholesterol catabolism pathway were
not. Expression of a subset of Mce3R genes was down-regulated upon
6-azasteroid treatment. The Mce3R regulon is implicated in stress
resistance and is absent in saprophytic mycobacteria. This regulon
encodes a cholesterol-regulated stress-resistance pathway that we
conclude is important for pathogenesis and contributes to drug tolerance,
and this pathway is vulnerable to small-molecule targeting in live
mycobacteria.
Background
Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections in both community and hospital settings and is a leading cause of health care–associated infections (HAIs). We sought to describe the molecular epidemiological landscape of patients with MRSA bloodstream infections (BSIs) at an urban medical center by evaluating the clinical characteristics associated with the two dominant endemic clones.
Methods
Comprehensive clinical data from the electronic health records of 227 hospitalized patients ≥18 years old with MRSA BSI over a 33-month period in New York City were collected. The descriptive epidemiology and mortality associated with the two dominant clones were compared using logistic regression.
Results
Molecular analysis revealed that 91% of all single-patient MRSA BSIs were due to two equally represented genotypes, clonal complex (CC) 5 (n = 117) and CC8 (n = 110). MRSA BSIs were associated with a 90-day mortality rate of 27%. CC8 caused disease more frequently in younger age groups (56 ± 17 vs 67 ± 17 years old; P < .001) and in those of nonwhite race (odds ratio [OR], 3.45; 95% confidence interval [CI], 1.51–7.87; P = .003), with few other major distinguishing features. Morbidity and mortality also did not differ significantly between the two clones. CC8 caused BSIs more frequently in the setting of peripheral intravenous catheters (OR, 5.96; 95% CI, 1.51–23.50; P = .01).
Conclusions
The clinical features distinguishing dominant MRSA clones continue to converge. The association of CC8 with peripheral intravenous catheter infections underscores the importance of classical community clones causing hospital-onset infections. Ongoing monitoring and analysis of the dynamic epidemiology of this endemic pathogen are crucial to inform management and prevent disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.