The evolution of the ratite birds has been widely attributed to vicariant speciation, driven by the Cretaceous breakup of the supercontinent Gondwana. The early isolation of Africa and Madagascar implies that the ostrich and extinct Madagascan elephant birds (Aepyornithidae) should be the oldest ratite lineages. We sequenced the mitochondrial genomes of two elephant birds and performed phylogenetic analyses, which revealed they are the closest relatives of the New Zealand kiwi, and distant from the basal ratite lineage of ostriches. This unexpected result strongly contradicts continental vicariance and instead supports flighted dispersal in all major ratite lineages. We suggest that convergence towards gigantism and flightlessness was facilitated by early Tertiary expansion into the diurnal herbivory niche following the extinction of the dinosaurs.One Sentence Summary: Ancient DNA reveals massive Madagascan elephant birds and tiny NZ kiwi are closest relatives, and supports flighted origin of ratites. Main Text:Despite extensive studies, the evolutionary history of the giant flightless ratite birds of the southern hemisphere landmasses, and the related flighted tinamous of South America, has remained a major unresolved question. The ratites and tinamous, termed palaeognaths due to their shared 'basal' palate structure, form the sister-taxon to all other living birds (neognaths). The living ratites are one of the few bird groups comprised largely of giant terrestrial herbivores and include: the emu and cassowary in Australia and New Guinea; kiwi in New Zealand; ostriches in Africa; and rhea in South America. In addition, two recently extinct groups included the largest birds known: the moa from New Zealand (1) [up to 2-3 m and 250 kg] and elephant birds from Madagascar [2-3 m height but up to 275 kg] (2, 3). Ratites have been believed to have originated through vicariant speciation driven by the continental breakup of Gondwana on the basis of congruence between the sequence of continental rifting and the presumed order of lineage divergence and distribution of ratites (4,5).New Zealand is the only landmass to have supported two major ratite lineages, the giant herbivorous moa and the chicken-sized, nocturnal, omnivorous kiwi. Morphological phylogenetic analyses initially suggested that these two groups were each other's closest relatives (6, 7), presumably diverging after the isolation of an ancestral form following the separation of New Zealand and Australia in the late Cretaceous ca. 80-60 million years ago (Ma) (8). However, subsequent studies suggest that kiwi are more closely related to the Australasian emu and cassowaries (9, 10), while the closest living relatives of the giant moa are the flighted South American tinamous (11-14). The latter relationship was completely unexpected on morphological grounds, and suggests a more complex evolutionary history than predicted by a model of strict vicariant speciation. By rendering ratites paraphyletic, the relationship between moa and tinamous also strong...
Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation.
The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.
The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya).
Highlights d Analysis of genomes from all five extant and three extinct rhinoceros species d Strong phylogenomic support for the geographical hypothesis of rhinoceros evolution d Basal split between African and Eurasian lineages in the early Miocene (16 mya) d While all rhinoceroses have low genome diversity, it is lowest in modern-day ones
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.