This paper focuses on a block cipher adaptation of the Galois Extension Fields (GEF) combination technique for PRNGs and targets application in the Internet of Things (IoT) space, an area where the combination technique was concluded as a quality stream cipher. Electronic Codebook (ECB) and Cipher Feedback (CFB) variations of the cryptographic algorithm are discussed. Both modes offer computationally efficient, scalable cryptographic algorithms for use over a simple combination technique like XOR. The cryptographic algorithm relies on the use of quality PRNGs, but adds an additional layer of security while preserving maximal entropy and near-uniform distributions. The use of matrices with entries drawn from a Galois field extends this technique to block size chunks of plaintext, increasing diffusion, while only requiring linear operations that are quick to perform. The process of calculating the inverse differs only in using the modular inverse of the determinant, but this can be expedited by a look-up table. We validate this GEF block cipher with the NIST test suite. Additional statistical tests indicate the condensed plaintext results in a near-uniform distributed ciphertext across the entire field. The block cipher implemented on an MSP430 offers a faster, more power-efficient alternative to the Advanced Encryption Standard (AES) system. This cryptosystem is a secure, scalable option for IoT devices that must be mindful of time and power consumption.
This paper explores the security of a single-stage residue number system (RNS) pseudorandom number generator (PRNG), which has previously been shown to provide extremely high-quality outputs when evaluated through available RNG statistical test suites or in using Shannon and single-stage Kolmogorov entropy metrics. In contrast, rather than blindly performing statistical analyses on the outputs of the single-stage RNS PRNG, this paper provides both white box and black box analyses that facilitate reverse engineering of the underlying RNS number generation algorithm to obtain the residues, or equivalently key, of the RNS algorithm. We develop and demonstrate a conditional entropy analysis that permits extraction of the key given a priori knowledge of state transitions as well as reverse engineering of the RNS PRNG algorithm and parameters (but not the key) in problems where the multiplicative RNS characteristic is too large to obtain a priori state transitions. We then discuss multiple defenses and perturbations for the RNS system that fool the original attack algorithm, including deliberate noise injection and code hopping. We present a modification to the algorithm that accounts for deliberate noise, but rapidly increases the search space and complexity. Lastly, we discuss memory requirements and time required for the attacker and defender to maintain these defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.