edical device alarms are designed to save lives, but excessive and misleading alerts remain a leading technological hazard in hospitals. Clinical devices sound hundreds of alarms per patient per day, creating a cacophony that can overwhelm, distract and desensitize health workers, the US Emergency Care Research Institute reveals in its report, 2014 Top 10 Health Technology Hazards. Caregivers with "alarm fatigue" are more likely to ignore or have trouble distinguishing between alarms, which can lead to delayed treatment and patient harm, the US Food and Drug Administration cites a report indicating there were 566 alarm-related deaths between 2005 and 2008. In the same period, Health Canada received 16 voluntary reports from hospitals of incidents tied to cardiac monitor alarms. Addressing alarm fatigue is "like opening Pandora's box," says Maria Cvach, the nurse lead of the alarm committee at Johns Hopkins Hospital in Baltimore, Maryland. "There are so many different arms to the problem." One is the sheer number of bells, beeps and chimes that echo through the modern hospital. A 12-day alarm sys
Colorectal cancer (CRC) is the third most common cancer diagnosed and the second leading cause of cancer-related deaths in the United States. About 50% of CRC patients relapsed after surgical resection and ultimately died of metastatic disease. Cancer stem cells (CSCs) are believed to be the primary reason for the recurrence of CRC. Specific stem cell marker, doublecortin-like kinase 1 (DCLK1) plays critical roles in initiating tumorigenesis, facilitating tumor progression, and promoting metastasis of CRC. It is up-regulated in CRC and upregulation of DCLK1 indicates poor prognosis. Whether DCLK1 is correlated with enhanced chemoresistance of CRC cells is unclear. Our research aims to reveal association of DCLK1 with chemoresistance of CRC cells and the underlying molecular mechanisms. In order to achieve our goal, we established stable DCLK1 over-expression cells (DCLK1+) using the HCT116 cells (WT). DCLK1+ and WT cells were treated with 5-Fluorouracil (5-Fu) at different doses for 24 or 48 hours. MTT assay was used to evaluate cell viability and IC 50 of 5-Fu was determined. Quantitative real time PCR was applied to determine gene expression of caspase-3 (casp-3), caspase-4 (casp-4), and caspase-10 (casp-10). Cleaved casp-3 expression was investigated using Western blot and immunofluorescence. Our results demonstrated that IC 50 of 5-Fu for the DCLK1+ cells was significantly higher than that of the WT cells for both 24 and 48hour treatment (P=0.002 and 0.048 respectively), indicating increased chemoresistance of the DCLK1+ cells. Gene expression of casp-3, casp-4, and casp-10 were significantly inhibited in the DCLK1+ cells after 5-Fu treatment compared to the WT cells (P=7.616e-08, 1.575e-05 and 5.307e-08, respectively). Cleaved casp-3 amount and casp-3 positive cells were significantly decreased in the DCLK1+ cells after 5-Fu treatment compared to the WT cells (P=0.015). In conclusion, our results demonstrated that DCLK1 overexpression enhanced the chemoresistance of CRC cells to 5-Fu treatment by suppressing gene expression of key caspases in the apoptosis pathway and activation of apoptosis pathway. DCLK1 can be an intriguing therapeutic target for the effective treatment of CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.