Autophagy is an intracellular process that maintains homeostasis by the removal of damaged organelles and proteins. A single nucleotide polymorphism (SNP) in the autophagy-related 16-like 1 (ATG16L1) gene results in decreased autophagy. We evaluated whether the ATG16L1 polymorphism influenced the time to delivery during labor induction in pregnant women with an unfavorable cervix. DNA from 69 women with an unfavorable cervix who required labor induction due to post-term (>294 days) (n=26), oligohydramnios (n=17), hypertension or pre-eclampsia (n=10), abnormal fetal heart rate (n=8), diabetes (n=3) or other reasons (n=5) was tested by gene amplification and endonuclease digestion for a SNP in ATG16L1 (rs2241880). The mean hours (SD) from induction to delivery was 20.8 (9.7) for women who were A,A homozygotes, 19.2 (8.8) for A,G heterozygotes and 14.3 (6.6) for homozygote carriers of the G,G variant (P=0.03 A,A vs. G,G, P=0.04 A,A/A,G vs. G,G). The G,G prevalence was 24.4% and 4.2% for those who delivered in ≤24 and >24 h, respectively (P=0.04). There was no difference in genotype distribution by indication for induction. A decreased genetic capacity for autophagy may be beneficial in women with an unfavorable cervix whose labor has to be induced.
The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P < .0001) and AA (P = .0003) concentrations. There were no associations between DHA, AA, or any neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.