The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove that noise in order to support any decision making for automatic heart disorder diagnosis systems. In this paper, the use of Ant Lion Optimizer (ALO) for optimizing and identifying the cutoff frequency of the ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from two classes: arrhythmia and supraventricular. Baseline wander is removed by a moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the ALO. The performance of the ALO is investigated. The ALO-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent ALO-based system successfully denoised the ECG signals more effectively than the conventional method. The accuracy percentage increased by 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.