At a high frequency of vibration; the cam of a vibrator always encounters the issue of jamming or the follower rolling off or losing contact with the cam when the appropriate design is not carried out. This study, therefore, developed the shape of the cam profile of mechanical yam vibrator using cycloid motion in the South. Displacement equations from the base circle to the cam profile were developed to obtain the shape of the cam using cycloid motion. A vibrometer was used to evaluate the developed 5 mm, 10 mm, and 20 mm cam sizes installed in a mechanical yam vibrator. The maximum displacement recorded for 5 mm, 10 mm and 20 mm cam sizes were 4.47 mm, 8.71 mm, and 14.54 mm respectively for low (1 – 5 Hz) frequency; 4.58 mm, 8.84 mm and 16.34 mm respectively for medium (60 – 100 Hz) frequency; and 4.66 mm, 9.09 mm and 17.30 mm respectively for high (150 – 200 Hz) frequency. This study shows that a cycloid cam would operate smoothly at low, medium, and high frequencies of vibration and function properly for frequency and displacement of vibration up to 200 Hz and 20 mm respectively without jamming and failing. A cycloid cam is therefore recommended for low, medium, and high frequencies motion of vibration.
Yam tubers lose weight during storage and prolonged storage can reduce tuber quality and quantity. This study investigated the application of vibration techniques for the control of the physical properties of yam tubers during storage. Measurements were conducted on the physical properties of the tubers: weight loss, shrinkage of the middle diameter, shrinkage of the length, top and bottom diameter, on 108 tubers treated and 32 tubers untreated (control). The factors of the experimental design were three levels of vibration frequencies, i.e. low (1 – 5 Hz), medium (60 – 100 Hz) and high (150 – 200 Hz), amplitudes of low (5 mm), medium (10 mm) and high (20 mm), and durations of low (5 minutes), medium (10 minutes) and high (15 minutes). Tuber weights were classified as small (0.1 – 2.9 kg) and large (3.0 – 5.0 kg). The tubers were stored for ten weeks after vibration, and their physical properties were measured every week during the storage period. Our study demonstrated that as the frequency, amplitude, and duration of vibration increase, the physical properties of yam tubers decrease significantly in both tuber classes. The study shows that mechanical vibration can slow down the changes in the physical properties of the yam tuber during storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.