Fluoride has become a notable toxicological environmental hazard worldwide because it is often found in groundwater. In the present study, hydroxyapatite adsorbent was synthesized from eggshell waste to remove fluoride from aqueous solution. XRD, FT-IR, and TGA techniques were used to characterize the prepared adsorbent. Batch adsorption studies were performed to examine the adsorption capacity of hydroxyapatite such as the effect of the initial pH of the solution, contact time, adsorbent dose, and initial fluoride concentration. The fluoride ion-selective electrode was used to determine the fluoride removal efficiency. 98.8% of fluoride was removed at pH 3.0, but at pH ~7.0, 85% of fluoride was removed; it shows that the fluoride adsorption is pH dependent. The adsorption isotherm studies (Langmuir and Freundlich models) and the experimental results for the removal of fluoride showed that the Langmuir model was more favorable and the reaction followed pseudo-second-order kinetics. In real water samples, the prepared hydroxyapatite derived from eggshell exhibited 81% removal efficiency. Our results indicate that eggshell waste-derived hydroxyapatite may be an alternative source for defluoridation in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.