A wireless ultrasound surgical system (WUSS) with battery modules requires efficient power consumption with appropriate cutting effects during surgical operations. Effective cutting performances of the ultrasound transducer (UT) should be produced for ultrasound surgical knives for effective hemostasis performance and efficient dissection time. Therefore, we implemented a custom-made UT with piezoelectric material and re-poling process, which is applied to enhance the battery power consumption and output amplitude performances of the WUSS. After the re-poling process of the UT, the quality factor increased from 1231.1 to 2418 to minimize the unwanted heat generation. To support this UT, we also developed a custom-made generator with a transformer and developed 2nd harmonic termination circuit, control microcontroller with an advanced reduced instruction set computer machine (ARM) controller, and battery management system modules to produce effective WUSS performances. The generator with a matching circuit in the WUSS showed a peak-to-peak output voltage and current amplitude of 166 V and 1.12 A, respectively, at the resonant frequency. The performance with non-contact optical vibrators was also measured. In the experimental data, the developed WUSS reduced power consumption by 3.6% and increased the amplitude by 20% compared to those of the commercial WUSS. Therefore, the improved WUSS performances could be beneficial for hemostatic performance and dissection time during surgical operation because of the developed UT with a piezoelectric material and re-poling process.
In ultrasonic systems, power amplifiers are one of the most important electronic components used to supply output voltages to ultrasonic devices. If ultrasonic devices have low sensitivity and limited maximum allowable voltages, it can be quite challenging to detect the echo signal in the ultrasonic system itself. Therefore, the class-J power amplifier, which can generate high output power with high efficiency, is proposed for such ultrasonic device applications. The class-J power amplifier developed has a power efficiency of 63.91% and a gain of 28.16 dB at 25 MHz and 13.52 dBm input. The pulse-echo measurement method was used to verify the performance of the electronic components used in the ultrasonic system. The echo signal appearing with the discharged high voltage signal was measured. The amplitude of the first echo signal in the measured echo signal spectrum was 4.4 V and the total-harmonic-distortion (THD), including the fundamental signal and the second harmonic, was 22.35%. The amplitude of the second echo signal was 1.08 V, and the THD, including the fundamental signal and the second harmonic, was 12.45%. These results confirm that a class-J power amplifier can supply a very high output echo signal to an ultrasonic device.
Wide bandwidth ultrasonic devices are a necessity in high-resolution ultrasonic systems. Therefore, constant output voltages need to be produced across the wide bandwidths of a power amplifier. We present the first design of a wide bandwidth class-S power amplifier for ultrasonic devices. The −6 dB bandwidth of the developed class-S power amplifier was measured at 125.07% at 20 MHz, thus, offering a wide bandwidth for ultrasonic devices. Pulse-echo measurement is a performance measurement method used to evaluate the performance of ultrasonic transducers, components, or systems. The pulse-echo signals were obtained using an ultrasonic transducer with designed power amplifiers. In the pulse-echo measurements, time and frequency analyses were conducted to evaluate the bandwidth flatness of the power amplifiers. The frequency range of the ultrasonic transducer was measured and compared when using the developed class-S and commercial class-A power amplifiers with the same output voltages. The class-S power amplifiers had a relatively flat bandwidth (109.7 mV at 17 MHz, 112.0 mV at 20 MHz, and 109.5 mV at 23 MHz). When the commercial class-A power amplifier was evaluated under the same conditions, an uneven bandwidth was recorded (110.6 mV at 17 MHz, 111.5 mV at 20 MHz, and 85.0 mV at 23 MHz). Thus, we demonstrated that the designed class-S power amplifiers could prove useful for ultrasonic devices with a wide frequency range.
Piezoelectric transducers are triggered by the output voltage signal of a transmit voltage amplifier (TVA). In mobile ultrasound instruments, the sensitivity of piezoelectric transducers is a critical parameter under limited power supply from portable batteries. Therefore, the enhancement of the output voltage amplitude of the amplifier under limited power supply could increase the sensitivity of the piezoelectric transducer. Several-stage TVAs are used to increase the voltage amplitude. However, inter-stage design issues between each TVA block may reduce the voltage amplitude and bandwidth because the electronic components of the amplifier are nonlinearly operated at the desired frequency ranges. To compensate for this effect, we propose a novel inter-stage output voltage amplitude improvement (OVAI) circuit integrated with a class-B TVA circuit. We performed fundamental A-mode pulse-echo tests using a 15-MHz immersion-type piezoelectric transducer to verify the design. The echo amplitude and bandwidth when using an inter-stage OVAI circuit integrated with a class-B TVA circuit (696 mVPP and 29.91%, respectively) were higher than those obtained when using only the class-B TVA circuit (576 mVPP and 24.21%, respectively). Therefore, the proposed OVAI circuit could be beneficial for increasing the output amplitude of the class-B TVA circuit for mobile ultrasound machines.
Piezoelectric transducers are important devices that are triggered by amplifier circuits in mobile ultrasound systems. Therefore, amplifier performance is vital because it determines the acoustic piezoelectric transducer performances. Particularly, mobile ultrasound applications have strict battery performance and current consumption requirements; hence, amplifier devices should exhibit good efficiency because the direct current (DC) voltage in the battery are provided to the supply voltages of the amplifier, thus limiting the maximum DC drain voltages of the main transistors in the amplifier. The maximum DC drain voltages are related with maximum output power if the choke inductor in the amplifier is used. Therefore, a need to improve the amplifier performance of piezoelectric transducers exists for mobile ultrasound applications. In this study, a post-voltage-boost circuit-supported class-B amplifier used for mobile ultrasound applications was developed to increase the acoustic performance of piezoelectric transducers. The measured voltage of the post-voltage-boost circuit-supported class-B amplifier (62 VP-P) is higher than that of only a class-B amplifier (50 VP-P) at 15 MHz and 100 mVP-P input. By performing the pulse-echo measurement test, the echo signal with the post-voltage-boost circuit-supported class-B amplifier (10.39 mVP-P) was also noted to be higher than that with only a class-B amplifier (6.15 mVP-P). Therefore, this designed post-voltage-boost circuit can help improve the acoustic amplitude of piezoelectric transducers used for mobile ultrasound applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.