The understanding and engineering of the plasmon-exciton coupling are necessary to control the innovative optoelectronic device platform. In this study, we investigated the intertwined mechanism of each plasmon-exciton couplings in monolayer molybdenum disulfide (MoS2) and plasmonic hybrid structure. The results of absorption, simulation, electrostatics, and emission spectra show that interaction between photoexcited carrier and exciton modes are successfully coupled by energy transfer and exciton recombination processes. Especially, neutral exciton, trion, and biexciton can be selectively enhanced by designing the plasmonic hybrid platform. All of these results imply that there is another degree of freedom to control the individual enhancement of each exciton mode in the development of nano optoelectronic devices.
We report on an electronic structure change of single-walled carbon nanotube (SWNT) on hexagonal boron nitride due to electron doping via high-pressure H 2 exposure. The fractional coverage of hydrogenated carbon atom is estimated to be at least θ=0.163 from the in situ I ds -V g measurements of the release process. Raman spectroscopy and x-ray photoelectron spectroscopy were carried out to support the in situ electrical measurements. In particular, we used the dissociative Langmuir-type model to yield the desorption coefficient k des by fitting it to the in situ electrical data. Finally, we applied this hydrogenation method to the SWNT network on the commercial Si/SiO 2 substrate to open the possibility of the scalable n-type semiconducting SWNT FETs.
Scanning thermal microscopy (SThM) enables to obtain thermal characteristic information such as temperature and thermal conductivity from the signals obtained by scanning a thermometer probe over a sample surface. Particularly, the precise control of the thermometer probe makes it possible to study near-field radiative heat transfer (NFRHT) by measuring the near-field thermal energy, which implies that when light is used as a local heat source, photothermal energy can be detected from the optical near-field by approaching the probe in the near-field region. In this study, SThM is applied to generate sub-wavelength near-field optical image in the plasmonic grating coupler. Herein, by controlling the surface plasmon polariton (SPP) generation, we show that the dominant component of SThM signal is from the optical response rather than the thermal response. The obtained near-field optical images have a spatial resolution of 40 nm and signal to noise ratio (SNR) of up to 19.8. In addition, field propagation images in the Z-direction can be visualised with the precise control of the distance between the thermometer probe and the sample.
Copper is a low-cost material compared to silver and gold, having high reflectivity in the near infrared spectral range as well as good electrical and thermal conductivity. Its properties make it a good candidate for metal-based low-cost multilayer thin-film devices and optical components. However, its high reflectance in the devices is reduced because copper is easily oxidized. Here, we suggest a copper-based Fabry-Perot optical filter consisting of a thin dielectric layer stacked between two copper films, which can realize low-cost production compared to a conventional silver-based etalon filter. The reduced performance due to the inherent oxidation of the copper surface can be overcome by passivating the copper films with monolayer graphene. The anti-oxidation of copper film is investigated by optical microscopy, x-ray photoelectron spectroscopy, and transmission measurement in UV-vi spectral ranges. Our results show that the graphene coating can be expanded for various metal-based optical devices in terms of anti-corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.