The vibrational frequency of the amide I transition of peptides is known to be sensitive to the strength of its hydrogen bonding interactions. In an effort to account for interactions with hydrogen bonding solvents in terms of electrostatics, we study the vibrational dynamics of the amide I coordinate of N-methylacetamide in prototypical polar solvents: D2O, CDCl3, and DMSO-d6. These three solvents have varying hydrogen bonding strengths, and provide three distinct solvent environments for the amide group. The frequency-frequency correlation function, the orientational correlation function, and the vibrational relaxation rate of the amide I vibration in each solvent are retrieved by using three-pulse vibrational photon echoes, two-dimensional infrared spectroscopy, and pump-probe spectroscopy. Direct comparisons are made to molecular dynamics simulations. We find good quantitative agreement between the experimentally retrieved and simulated correlation functions over all time scales when the solute-solvent interactions are determined from the electrostatic potential between the solvent and the atomic sites of the amide group.
Carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in H2O and D2O solutions, we investigated the amide I mode frequency fluctuation and dynamics. The ensemble averaged amide I mode frequency shift was found to be −78 cm−1 in comparison to that of the gas-phase NMA molecule, which is in excellent agreement with the experimental value of −81 cm−1. Similar to the solvation correlation function of a polar solute in liquid water, the correlation function of the fluctuating amide I mode frequency exhibits a bimodal decaying pattern and both the hindered translational and the librational motions of the water molecules directly hydrogen-bonded to the NMA are found to play critical roles in the pure dephasing of the amide I mode. The pure dephasing constant is estimated to be 11 cm−1. The vibrational broadening mechanism is mainly determined by the motional narrowing process. The vibrational Stokes shift of the amide I mode was estimated to be as small as 1.2 cm−1. The amide I IR absorption spectrum thus calculated without any adjustable parameters except for the lifetime of the first excited state has a full width at half maximum of 26.9 cm−1 and is found to be in good agreement with the experiment.
Molecular simulations have largely contributed to the emergence of Metal Organic Frameworks (MOFs) not only for the resolution of the crystal structures of the most complex and poorly crystallized solids but also to enumerate all the plausible structures constructed by the assembly of a large diversity of inorganic and organic building blocks. Besides this in silico design of novel MOFs which has been only rarely validated so far by the post-synthesis of the desired material, a computational effort has been deployed to modulate the chemical and topological features of existing architectures specifically targeted for societally-relevant applications. Molecular modelling has been also frequently used to guide interpretation of the experimental data by providing a deep understanding of the microscopic adsorption/separation mechanism with the objective to drive the synthesis effort towards tuned materials with the required features for an optimization of their properties. This presentation will highlight the invaluable contribution of the computational approaches from the birth of novel MOFs and their structure elucidations to the characterization and understanding of their properties, throughout recent advances our groups have made in this field. A special emphasizes will be devoted to a series of recent MOFs that show promising adsorption/separation performances for natural gas upgrading, carbon capture and interesting features for mechanical energy storage and proton conduction.
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and inter-protein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an allencompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semi-empirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository website (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-theart multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
By carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in methanol solution, the amide I mode frequency fluctuation and hydrogen bonding dynamics were theoretically investigated. Combining an extrapolation formula developed from systematic ab initio calculation studies of NMA-(CH3OH)n clusters with a classical molecular dynamics simulation method, we were able to quantitatively describe the solvatochromic vibrational frequency shift induced by the hydrogen-bonding interaction between NMA and solvent methanol. It was found that the fluctuating amide I mode frequency distribution is notably non-Gaussian and it can be decomposed into two Gaussian peaks that are associated with two distinctively different solvation structures. The ensemble-average-calculated linear response function associated with the IR absorption is found to be oscillating, which is in turn related to the doublet amide I band shape. Numerically calculated infrared absorption spectra are directly compared with experiment and the agreement was found to be excellent. By using the Onsager's regression hypothesis, the rate constants of the interconversion process between the two solvation structures were obtained. Then, the nonlinear response functions associated with two-dimensional infrared pump-probe spectroscopy were simulated. The physics behind the two-dimensional line shape and origin of the cross peaks in the time-resolved pump-probe spectra is explained and the result is compared with 2D spectra experimentally measured recently by Woutersen et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.