Penelitian ini bertujuan untuk melakukan identifikasi tweet yang mengandung konten kasar atau ofensif. Untuk melakukan hal tersebut, ada lima tahap yang dilalui yaitu pengumpulan data, preprocessing, ekstraksi fitur, klasifikasi, dan evaluasi. Adapun algoritma klasifikasi yang digunakan adalah Multinomial Naïve Bayes dan Support Vector Machine dengan linear kernel. Berdasarkan eksperimen, diketahui bahwa performa algoritma Support Vector Machine dengan linear kernel lebih unggul secara keseluruhan dibandingkan dengan algoritma Multinomial Naïve Bayes. Hal tersebut dilihat dari perolehan nilai accuracy, precision, recall, dan F1-score untuk algoritma SVM berturut-turut adalah 0.9928; 0.9914; 0.9946; dan 0.9930. Sedangkan perolehan accuracy, precision, recall, dan F1-score algoritma Multinomial Naïve Bayes berturut-turut adalah 0.9834; 0.9912; 0.9762; dan 0.9836. Namun demikian, dapat disimpulkan bahwa algoritma Support Vector Machine dan Multinomial Naïve Bayes memiliki performa yang hampir sama baiknya. Hal tersebut dibuktikan dengan selisih capaian performa yang tidak terlalu mencolok dari keduanya.
The medical domain has always been an all-time important domain since healthiness is everyone’s purpose. People find medical document resources in the sea of data and information, such as the web. To support information retrieval and knowledge dissemination through the web, we analyze the use of semi-supervised learning to classify medical-related documents. The semi-supervised learning technique is chosen to show the possibilities of creating good classifiers with limited human supervision. In this research, we use the Naïve Bayes and Pseudo Labeling technique. We analyze different labeled:unlabeled data ratios of the training dataset in the experiment, starting from 4:3, 3:4, 2:5, and 1:6, to see the semi-supervised learning performance with different levels of human supervision. We get a relatively similar result in terms of classification average accuracy (81%-83%). Interestingly, in one experiment, the highest accuracy of the 1:6 ratio (85%) outperforms the 2:5 ratio (82%) and has the same accuracy as the 4:3 (85%). However, the standard deviation of the accuracy in the 1:6 ratio is the highest, amongst others (4.183). Finally, semi-supervised learning can be used to create a great classifier model of the medical domain in Bahasa Indonesia with less human supervision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.