Pencil-beam scanning (PBS) proton therapy (PT), particularly intensity modulated PT, represents the latest advanced PT technology for treating cancers, including thoracic malignancies. On the basis of virtual clinical studies, PBS-PT appears to have great potential in its ability to tightly tailor the dose to the target while sparing critical structures, thereby reducing treatment-related toxicities, particularly for tumors in areas with complicated anatomy. However, implementing PBS-PT for moving targets has several additional technical challenges compared with intensity modulated photon radiation therapy or passive scattering PT. Four-dimensional computed tomography-based motion management and robust optimization and evaluation are crucial for minimizing uncertainties associated with beam range and organ motion. Rigorous quality assurance is required to validate dose delivery both before and during the course of treatment. Active motion management (eg, breath hold), beam gating, rescanning, tracking, or adaptive planning may be needed for cases involving significant motion or changes in motion or anatomy over the course of treatment.
PurposeA proton beam therapy (PBT) system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT) were compared with free-breathing spot-scanning proton beam therapy (FBPT) in a simulation.Materials and MethodsIn-house simulation tools and treatment planning system VQA (Hitachi, Ltd., Japan) were used for estimating the dose distribution and treatment time. Simulations were performed for 48 motion parameters (including 8 respiratory patterns and 6 initial breathing timings) on CT data from two patients, A and B, with hepatocellular carcinoma and with clinical target volumes 14.6 cc and 63.1 cc. The respiratory patterns were derived from the actual trajectory of internal fiducial markers taken in X-ray real-time tumor-tracking radiotherapy (RTRT).ResultsWith FBPT, 9/48 motion parameters achieved the criteria of successful delivery for patient A and 0/48 for B. With RGPT 48/48 and 42/48 achieved the criteria. Compared with FBPT, the mean liver dose was smaller with RGPT with statistical significance (p<0.001); it decreased from 27% to 13% and 28% to 23% of the prescribed doses for patients A and B, respectively. The relative lengthening of treatment time to administer 3 Gy (RBE) was estimated to be 1.22 (RGPT/FBPT: 138 s/113 s) and 1.72 (207 s/120 s) for patients A and B, respectively.ConclusionsThis simulation study demonstrated that the RGPT was able to improve the dose distribution markedly for moving tumors without very large treatment time extension. The proton beam therapy system dedicated to spot-scanning with a gating function for real-time imaging increases accuracy with moving tumors and reduces the physical size, and subsequently the cost of the equipment as well as of the building housing the equipment.
In this review article, we introduced the importance of “motion management” in advanced particle therapy. Several publications have reported that organ motion causes dose distribution disturbances due to interplay and blurring effects. Furthermore, motion can result in target dose miss and unwanted dose to healthy structures around the target. To avoid these problems, motion should be assessed and monitored prior and during treatment. In this review article, we give an overview about clinically available motion monitoring systems. Based on the acquired motion information an adequate motion mitigation technique should be chosen. This article reviews the clinical status of motion mitigation techniques like rescanning, gating and tracking. A limited number of centers have now started the treatment of targets in the thorax and abdomen using scanned particle beams. Therefore, the establishment of guidelines for motion monitoring and motion mitigation will be essential in the coming years.
BackgroundWe performed a dosimetric comparison of spot-scanning proton therapy (SSPT) and intensity-modulated radiation therapy (IMRT) for hepatocellular carcinoma (HCC) to investigate the impact of tumor size on the risk of radiation induced liver disease (RILD).MethodsA number of alternative plans were generated for 10 patients with HCC. The gross tumor volumes (GTV) varied from 20.1 to 2194.5 cm3. Assuming all GTVs were spherical, the nominal diameter was calculated and ranged from 3.4 to 16.1 cm. The prescription dose was 60 Gy for IMRT or 60 cobalt Gy-equivalents for SSPT with 95% planning target volume (PTV) coverage. Using IMRT and SSPT techniques, extensive comparative planning was conducted. All plans were evaluated by the risk of RILD estimated using the Lyman-normal-tissue complication probability model.ResultsFor IMRT the risk of RILD increased drastically between 6.3–7.8 cm nominal diameter of GTV. When the nominal diameter of GTV was more than 6.3 cm, the average risk of RILD was 94.5% for IMRT and 6.2% for SSPT.ConclusionsRegarding the risk of RILD, HCC can be more safely treated with SSPT, especially if its nominal diameter is more than 6.3 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.