Bacteremia resulting from dental surgery is increasingly recognized as a health risk, especially in older and immunocompromised patients. Dentistry-associated bacteremia can lead to remote infections, as exemplified by valvular endocarditis. Emerging evidence points to a novel role played by oral cavity commensals in the pathogenesis of diabetes, respiratory disease, cardiovascular disease, and adverse pregnancy outcomes. Whether dental extraction, a commonly undertaken procedure in old horses, causes bacteremia has not been reported extensively. In a prospective clinical study using next generation sequencing (based on bacterial 16S rRNA), the circulating blood microbiome was characterized before and at 1 h following extraction of incisor, canine or cheek teeth from 29 adult horses with dental disease. 16S rRNA gene sequencing results from the blood microbiome were compared with those from gingival swab samples obtained prior to extraction at the location of the diseased tooth. Bacteremia associated with translocated gingival commensals was demonstrated in horses undergoing exodontia and was, in some cases, still evident one hour post-operatively.
Common treatments for Equine Metabolic Syndrome (EMS) and associated conditions include removal from pasture and adoption of an all-hay diet. Pharmacological treatments for EMS include metformin, a biguanide antihyperglycemic agent also administered to people to help improve glucose tolerance and insulin sensitivity. Both treatments may work, at least partially, through the gut microbiota, yet little is known regarding these effects in the equine host. To determine the influence on the fecal microbiota of this diet change and administration of metformin, six healthy horses were removed from pasture and switched to an all-hay diet, with four of those horses also receiving oral metformin for seven days. Control horses (n = 24) remaining on pasture and receiving no metformin were sampled at the beginning and end of one week. All samples were subjected to 16S rRNA sequencing, and horses undergoing the diet change were subjected to an oral sugar test twice, one week apart. Characteristic changes in the microbiota following diet change included the significant expansion of the phylum Kiritimatiellaeota. As Kiritimatiellaeota are related to Verrucomicrobia, found to expand in the microbiota of mice and humans in response to metformin, this taxon may represent the cognate microbes in equine hosts.
Summary A 10‐week‐old Westphalian filly was presented for vaginal discharge of 14‐days' duration. Examination revealed a partial vaginal septum and pyometra. Two Group B streptococcal pathogens (Streptococcus dysgalactiae subspecies equisimilis and Streptococcus equi subspecies zooepidemicus) were isolated from the uterus. Pyometra was successfully treated using endoscopically facilitated removal of intraluminal exudate and locally and systemically administered antimicrobials. The filly was reported to be progressing well at 12 months following treatment with no further evidence of disease. Pyometra has not been previously reported in foals, and vaginal septum is evidently rare in this species. These abnormalities should be considered when young fillies develop purulent vaginal discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.