In a global sales market with networked production steps and increasing complex machine tools, scaling service ecosystems for production provide an adequate solution for handling the generated data. The existing sensor equipment at current and the extension possibility by the System-of-Systems approach for existing machine tools can offer value-added services by the smart handling of production-related data. It is important to make these data validatable and exchangeable, taking into account to different protection goals. The trust of the individual actors in such a volatile value chain and the different (partly cross-border) value creation partners play an important role. The participation of a large number of these actors creates an attractive overall system (ecosystem) with lots of services and network effects. Concerning data security there are numerous aspects, which have not been adequately answered or taken into account in the use of a service ecosystem in the production environment. The paper discusses a distributed ecosystem for production on a distributed ledger-based service ecosystem, in which services can be mapped in the machine tool environment (e.g. calibration). This technology can be used for secure data exchange in order to discuss traceability and unchangeability of data while maintaining data sovereignty.
In this paper, we use the blockchain technology to design a prototype to secure process data from a 3D-printer. Datastreams are gathered from various sources such as OPC UA servers and autonomous retrofit sensor nodes. This is followed by pre-processing for data reduction, storage in a data model, and the generation of a unique hash value over it. The hash values are stored in a blockchain using appropriate consensus methods, taking into account their temporal origin and production identification number. This also includes the context-related influence of sensor signals on the production process Restrictive access regulations using smart contracts make a partially or fully automated machine tool calibration possible. In this context, we show to realize a process partial or full automation through smart contracts. Physical machine tools and virtual simulations are integrated into the blockchain network to document the stability and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.