Monte Carlo (MC) calculations are a fundamental tool for the investigation of ionization chambers (ICs) in radiation fields, and for calculations in the scope of IC reference dosimetry. Geant4, as used for the toolkit TOPAS, is a major general purpose code, generally suitable for investigating ICs in primary proton beams. To provide reliable results, the impact of parameter settings and the limitations of the underlying condensed history (CH) algorithm need to be known. A Fano cavity test was implemented in Geant4 (10.03.p1) for protons, based on the existing version for electrons distributed with the Geant4 release. This self-consistent test allows the calculation to be compared with the expected result for the typical IC-like geometry of an air-filled cavity surrounded by a higher density material. Various user-selectable parameters of the CH implementation in the EMStandardOpt4 physics-list were tested for incident proton energies between 30 and 250 MeV. Using TOPAS (3.1.p1) the influence of production cuts was investigated for bare air-cavities in water, irradiated by primary protons. Detailed IC geometries for an NACP-02 plane-parallel chamber and an NE2571 Farmer-chamber were created. The overall factor f as a ratio between the dose-to-water and dose to the sensitive air-volume was calculated for incident proton energies between 70 and 250 MeV. The Fano test demonstrated the EMStandardOpt4 physics-list with the WentzelIV multiple scattering model as appropriate for IC calculations. If protons start perpendicular to the air cavity, no further step-size limitations are required to pass the test within 0.1%. For an isotropic source, limitations of the maximum step length within the air cavity and its surrounding as well as a limitation of the maximum fractional energy loss per step were required to pass within 0.2%. A production cut of ⩽5 μm or ∼15 keV for all particles yielded a constant result for f of bare air-filled cavities. The overall factor f for the detailed NACP-02 and NE2571 chamber models calculated with TOPAS agreed with the values of Gomà et al (2016 Phys. Med. Biol. 61 2389) within statistical uncertainties (1σ) of<0.3% for almost all energies with a maximum deviation of 0.6% at 250 MeV for the NE2571. The selection of hadronic scattering models (QGSP_BIC versus QGSP_BERT) in TOPAS impacted the results at the highest energies by 0.3% ± 0.1%. Based on the Fano cavity test, the Geant4/TOPAS Monte Carlo code, in its investigated version, can provide reliable results for IC calculations. Agreement with the detailed IC models and the published values of Gomà et al can be achieved when production cuts are reduced from the TOPAS default values. The calculations confirm the reported agreement of Gomà et al for [Formula: see text] with IAEA-TRS398 values within the given uncertainties. An additional uncertainty for the MC-calculated [Formula: see text] of ∼0.3% by hadronic interaction models should be considered.
To provide Monte Carlo calculated beam quality correction factors (k Q ) for monoenergetic proton beams using , a toolkit based on the Monte Carlo code . Monte Carlo simulations of six plane-parallel and four cylindrical ionization chambers were carried out. The latest ICRU 90 recommendations on key data for ionizing-radiation dosimetry were used to calculate the electronic stopping powers and to select the mean energy necessary to create an ion pair in air ( ). factors were calculated for a 60Co spectrum at a depth of 5 g cm−2. f Q factors and ratios as well as k Q factors were calculated at the entrance region of monoenergetic proton beams with energies between 60 MeV and 250 MeV. Additionally, perturbation correction factors for the Exradin A1SL ionization chamber at an energy of 250 MeV were calculated. factors agreed within 0.7% or better, f Q factors within 1.7% or better and ratios within 2.2% or better with Monte Carlo calculated values provided in the literature. Furthermore, k Q factors calculated in this work were found to agree within 1% or better with experimentally determined k Q factors provided in the literature, with only two exceptions with deviations of 1.4% and 2.4%. The total perturbation correction factor for the Exradin A1SL chamber was 0.969(7) and hence significantly different than unity in contrast to the assumption from the IAEA TRS-398 code of practice (CoP). can be used to calculate k Q factors in clinical proton beams. k Q factors for six plane-parallel and four cylindrical ionization chambers were calculated and provided for the upcoming update of the IAEA TRS-398 CoP.
Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic 'modulation power' is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue's density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.
PurposeTo quantify the effects of the Bragg peak degradation due to lung tissue on treatment plans of lung cancer patients with spot scanning proton therapy and to give a conservative approximation of these effects.Methods and materialsTreatment plans of five lung cancer patients (tumors of sizes 2.7–46.4 cm3 at different depths in the lung) were optimized without consideration of the Bragg peak degradation. These treatment plans were recalculated with the Monte Carlo code TOPAS in two scenarios: in a first scenario, the treatment plans were calculated without including the Bragg peak degradation to reproduce the dose distribution predicted by the treatment-planning system (TPS). In a second scenario, the treatment plans were calculated while including the Bragg peak degradation. Subsequently, the plans were compared by means of Dmean, D98% and D2% in the clinical target volume (CTV) and organs at risk (OAR). Furthermore, isodose lines were investigated and a gamma index analysis was performed.ResultsThe Bragg peak degradation leads to a lower dose in the CTV and higher doses in OARs distal to the CTV compared to the prediction from the TPS. The reduction of the mean dose in the CTV was − 5% at maximum and − 2% on average. The deeper a tumor was located in the lung and the smaller its volume the bigger was the effect on the CTV. The enhancement of the mean dose in OARs distal to the CTV was negligible for the cases investigated.ConclusionsEffects of the Bragg peak degradation due to lung tissue were investigated for lung cancer treatment plans in proton therapy. This study confirms that these effects are clinically tolerable to a certain degree in the current clinical context considering the various more critical dose uncertainties due to motion and range uncertainties in proton therapy.
Purpose The purpose of this work is to analyze whether the Monte Carlo codes penh, fluka, and geant4/topas are suitable to calculate absorbed doses and fQ/fQ0 ratios in therapeutic high‐energy photon and proton beams. Methods We used penh, fluka, geant4/topas, and egsnrc to calculate the absorbed dose to water in a reference water cavity and the absorbed dose to air in two air cavities representative of a plane‐parallel and a cylindrical ionization chamber in a 1.25 MeV photon beam and a 150 MeV proton beam — egsnrc was only used for the photon beam calculations. The physics and transport settings in each code were adjusted to simulate the particle transport as detailed as reasonably possible. From these absorbed doses, fQ0 factors, fQ factors, and fQ/fQ0 ratios (which are the basis of Monte Carlo calculated beam quality correction factors kQ,Q0) were calculated and compared between the codes. Additionally, we calculated the spectra of primary particles and secondary electrons in the reference water cavity, as well as the integrated depth–dose curve of 150 MeV protons in water. Results The absorbed doses agreed within 1.4% or better between the individual codes for both the photon and proton simulations. The fQ0 and fQ factors agreed within 0.5% or better for the individual codes for both beam qualities. The resulting fQ/fQ0 ratios for 150 MeV protons agreed within 0.7% or better. For the 1.25 MeV photon beam, the spectra of photons and secondary electrons agreed almost perfectly. For the 150 MeV proton simulation, we observed differences in the spectra of secondary protons whereas the spectra of primary protons and low‐energy delta electrons also agreed almost perfectly. The first 2 mm of the entrance channel of the 150 MeV proton Bragg curve agreed almost perfectly while for greater depths, the differences in the integrated dose were up to 1.5%. Conclusion penh, fluka, and geant4/topas are capable of calculating beam quality correction factors in proton beams. The differences in the fQ0 and fQ factors between the codes are 0.5% at maximum. The differences in the fQ/fQ0 ratios are 0.7% at maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.