Beaches around the world continuously adjust to daily and seasonal changes in wave and tide conditions, which are themselves changing over longer timescales. Different approaches to predict multi-year shoreline evolution have been implemented; however, robust and reliable predictions of shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we show results of a modelling competition, where 19 numerical models (a mix of established shoreline models and machine learning techniques) were tested using data collected for tairua beach, new Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) data obtained from a camera system. in general, traditional shoreline models and machine learning techniques were able to reproduce shoreline changes during the calibration period (1999-2014) for normal conditions but some of the model struggled to predict extreme and fast oscillations. During the forecast period (unseen data, 2014-2017), both approaches showed a decrease in models' capability to predict the shoreline position. this was more evident for some of the machine learning algorithms. A model ensemble performed better than individual models and enables assessment of uncertainties in model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of available models. Quantitative prediction of beach erosion and recovery is essential to planning resilient coastal communities with robust strategies to adapt to erosion hazards. Over the last decades, research efforts to understand and predict shoreline evolution have intensified as coastal erosion is likely to be exacerbated by climatic changes 1-5. The social and economic burden of changes in shoreline position are vast, which has inspired development of a growing variety of models based on different approaches and techniques; yet current models can fail (e.g. predicting erosion in accreting conditions). The challenge for shoreline models is, therefore, to provide reliable, robust and realistic predictions of change, with a reasonable computational cost, applicability to a broad variety of systems, and some quantifiable assessment of the uncertainties.
The steepness of the beach face is a fundamental parameter for coastal morphodynamic research. Despite its importance, it remains extremely difficult to obtain reliable estimates of the beach‐face slope over large spatial scales (thousands of km of coastline). In this letter, a novel approach to estimate this slope from time series of satellite‐derived shoreline positions is presented. This new technique uses a frequency domain analysis to find the optimum slope that minimizes high‐frequency tidal fluctuations relative to lower‐frequency erosion/accretion signals. A detailed assessment of this new approach at eight locations spanning a range of tidal regimes, wave climates, and sediment grain sizes shows strong agreement (R2 = 0.93) with field measurements. The automated technique is then applied across thousands of beaches in eastern Australia and California, USA, revealing similar regional‐scale distributions along these two contrasting coastlines and highlights the potential for new global‐scale insight to beach‐face slope spatial distribution, variability, and trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.