Crystal structures of classical cadherins have revealed two dimeric configurations: in the first, Nterminal β-strands of EC1 domains "swap" between partner molecules. The second configuration (the "X-dimer"), also observed for T-cadherin, is mediated by residues near the EC1-2 calcium binding sites, and N-terminal β-strands of partner EC1 domains, though held adjacent, do not swap. Here we show that strand swapping mutants of type I and II classical cadherins form X-dimers. Mutant cadherins impaired for X-dimer formation show no binding in short timeframe surface plasmon resonance assays but in long timeframe experiments, have homophilic binding affinities close to wild-type. Further experiments show that exchange between monomers and dimers is slowed in these mutants. These results reconcile apparently disparate results from prior structural studies, and suggest that X-dimers are binding intermediates that facilitate the formation of strand swapped dimers.
Many cell-cell adhesive events are mediated by the dimerization of cadherin proteins presented on apposing cell surfaces. Cadherinmediated processes play a central role in the sorting of cells into separate tissues in vivo, but in vitro assays aimed at mimicking this behavior have yielded inconclusive results. In some cases, cells that express different cadherins exhibit homotypic cell sorting, forming separate cell aggregates, whereas in other cases, intermixed aggregates are formed. A third pattern is observed for mixtures of cells expressing either N-or E-cadherin, which form distinct homotypic aggregates that adhere to one another through a heterotypic interface. The molecular basis of cadherin-mediated cell patterning phenomena is poorly understood, in part because the relationship between cellular adhesive specificity and intermolecular binding free energies has not been established. To clarify this issue, we have measured the dimerization affinities of N-cadherin and E-cadherin. These proteins are similar in sequence and structure, yet are able to mediate homotypic cell patterning behavior in a variety of tissues. N-cadherin is found to form homodimers with higher affinity than does E-cadherin and, unexpectedly, the N/Ecadherin heterophilic binding affinity is intermediate in strength between the 2 homophilic affinities. We can account for observed cell aggregation behaviors by using a theoretical framework that establishes a connection between molecular affinities and cell-cell adhesive specificity. Our results illustrate how graded differences between different homophilic and heterophilic cadherin dimerizaton affinities can result in homotypic cell patterning and, more generally, show how proteins that are closely related can, nevertheless, be responsible for highly specific cellular adhesive behavior.binding affinities ͉ cadherins ͉ cell adhesion ͉ differential adhesion hypothesis ͉ surface plasmon resonance E xpression of different cadherins has been associated with the sorting of cells into distinct layers or compartments (1, 2). This behavior is often viewed as a manifestation of homotypic cell-sorting behavior-like cells adhere to one another. However, cell layers characterized by the expression of different cadherins sometimes remain in contact with one another, suggesting that heterotypic adhesion may also be of physiological relevance. Consistent with in vivo observations, in vitro aggregation assays have shown that cells expressing different classical cadherins can adhere to one another (3, 4). In some such instances, cells form distinct aggregates that possess a common interface, whereas in others, cells are completely mixed. Thus, cells expressing cadherins can exhibit homotypic and/or heterotypic adhesive properties, albeit for reasons that remain to be explained. Here, we probe the molecular basis of this behavior.Cadherins constitute a large family of cell surface adhesion receptors that can be grouped into numerous subfamilies (5). The type I and type II ''classical cadherins'' are found ...
The tubby mouse, which shows late-onset obesity and neurosensory deficits, arises from a mutation in the Tub gene. Tub shares homology with the genes for tubby-like proteins Tulp1, Tulp2 and Tulp3. Ablation of Tub, Tulp1 or Tulp3 causes disease phenotypes that are indicative of their importance in nervous-system function and development. Despite this importance, the biochemical functions of tubby-like proteins are only now beginning to be understood. At present, data indicate that tubby-like proteins might function as heterotrimeric-G-protein-responsive intracellular signalling factors, although an array of data also implicates them in other processes.
Immunohistochemical localization of low-level antigens in the arterial vasculature is complicated by the presence of complex molecules such as collagen, elastin, cholesterol, and fluorescent lipids that exhibit autofluorescence over a wide spectrum of wavelengths. UV irradiation of arterial vasculature has remained ineffective in preparing samples for immunofluorescent staining because of the recovery of the endogenous fluorescence within a short time following treatment. Therefore, we sought to further enhance the signal-to-noise ratio in arteries by optimizing the photobleaching of this tissue. We report here that the use of filtered sunlight significantly reduces arterial autofluorescence compared to standard UV shortwave and longwave irradiation and maintains multiple antigen epitopes suitable for immunohistochemical analysis. Using this method, we localized low-level laminin-5 isoform expression in situ, which was previously indistinguishable from endogenous autofluorescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.