Abstract. In this paper we explore the geometry of the integer points in a cone rooted at a rational point. This basic geometric object allows us to establish some links between lattice point free bodies and the derivation of inequalities for mixed integer linear programs by considering two rows of a simplex tableau simultaneously.
Most real-world optimization problems are multiobjective by nature, involving noncomparable objectives. Many of these problems can be formulated in terms of a set of linear objective functions that should be simultaneously optimized over a class of linear constraints. Often there is the complicating factor that some of the variables are required to be integral. The resulting class of problems is named multiobjective mixed integer programming (MOMIP) problems. Solving these kinds of optimization problems exactly requires a method that can generate the whole set of nondominated points (the Pareto-optimal front). In this paper, we first give a survey of the newly developed branch and bound methods for solving MOMIP problems. After that, we propose a new branch and bound method for solving a subclass of MOMIP problems, where only two objectives are allowed, the integer variables are binary, and one of the two objectives has only integer variables. The proposed method is able to find the full set of nondominated points. It is tested on a large number of problem instances, from six different classes of MOMIP problems. The results reveal that the developed biobjective branch and bound method performs better on five of the six test problems, compared with a generic two-phase method. At this time, the two-phase method is the most preferred exact method for solving MOMIP problems with two criteria and binary variables. This paper was accepted by Dimitris Bertsimas, optimization.
Abstract. In the seventies, Balas introduced intersection cuts for a Mixed Integer Linear Program (MILP), and showed that these cuts can be obtained by a closed form formula from a basis of the standard linear programming relaxation. In the early nineties, Cook, Kannan and Schrijver introduced the split closure of a MILP, and showed that the split closure is a polyhedron. In this paper, we show that the split closure can be obtained using only intersection cuts. We give two different proofs of this result, one geometric and one algebraic. The result is then used to provide a new proof of the fact that the split closure of a MILP is a polyhedron. Finally, we extend the result to more general disjunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.