ObjectiveMagnetic resonance (MR) imaging has been used for the detection of cerebral vasospasm (VSP) related infarction in experimental subarachnoid hemorrhage (eSAH) in rats. Conventional angiography is generally used to visualize VSP, which is an invasive technique with a possible increase in morbidity and mortality. In this study we evaluated the validity of MR-angiography (MRA) in detecting VSP and its feasibility to define VSP severity grades after eSAH in rats.MethodsSAH was induced using the double-hemorrhage model in 12 rats. In two rats, saline solution was injected instead of blood (sham group). MR was performed on day 1, 2 and on day 5. T1-, T2-, T2*-weighted and time-of-flight MR sequences were applied, which were analyzed by two blinded neuroradiologists. Vessel narrowing of 25–50% was defined as mild, 50–75% as moderate and >75% as severe VSP.ResultsWe performed a total of 34 MRAs in 14 rats. In 14 rats, MRA was performed on day 2 and day 5. In six rats MRA was additionally performed on day1 before the blood injection. A good visualization of cerebral vessels was possible in all cases. No VSP was seen in the sham group neither on day 2 nor on day 5. We found vasospasm on day 2 in 7 of the 14 rats (50%) whereas all 7 rats had mild and one rat had additionally moderate and severe vasospasm in one vessel, respectively. On day 5 we found vasospasm in 8 of the 14 rats (60%) whereas 4 rats had severe vasospasm, 1 rat had moderate vasospasm and 3 rats demonstrated mild vasospasm. In 4 of the 14 rats (30%) an ischemic lesion was detected on day 5. Three of these rats had severe vasospasm and one rat had mild vasospasm. Severe vasospasm on day 5 was statistically significant correlated with the occurrence of ischemic lesions (Fisher’s Exact test, OR 19.5, p = 0.03).ConclusionsMRA is a noninvasive diagnostic tool, which allows a good visualization of the cerebral vasculature and provides reproducible results concerning the detection of VSP and the differentiation into three severity grades in rats. Future studies are needed to directly compare MRA with conventional angiography.
The amount of extravasated blood is an established surrogate marker for subarachnoid hemorrhage (SAH) severity, which varies in different experimental SAH (eSAH) models. A comprehensive eSAH grading system would allow a more reliable correlation of outcome parameters with SAH severity. The aim of this study was to define a severity score for eSAH related to the Fisher-Score in humans. Material and methods SAH was induced in 135 male rats using the modified double hemorrhage model. A sham group included 8 rats, in which saline solution instead of blood was injected. Histological analysis with HE(hematoxylin-eosin)-staining for the visualization of blood was performed in all rats on day 5. The amount and distribution of blood within the subarachnoid space and ventricles (IVH) was analyzed. Results The mortality rate was 49.6% (71/143).
Transcranial direct current stimulation (tDCS) has been shown to induce changes in cortical excitability and perfusion in a rat ischemic stroke model. Since perfusion disturbances are a common phenomenon, not only in ischemic but also in hemorrhagic stroke, tDCS might have a possible beneficial effect on cerebral perfusion in hemorrhagic stroke as well. We applied tDCS in a rat model of subarachnoid hemorrhage (SAH) and evaluated its impact on vasospasm. SAH was induced using the double-hemorrhage rat model. TDCS was applied on day 3 and 4. For vasospasm assessment magnetic resonance angiography was performed on day 1, day 2 and day 5. A total of 147 rats were operated, whereat 72 rats died before day 5 and 75 rats survived the whole experiment and could be analyzed. The cathodal group consisted of 26 rats, the anodal group included 24 rats. Thirteen rats served as controls without tDCS, and twelve rats underwent a sham operation. The cathodal group revealed the lowest incidence of new vasospasm on day 5 ( p = 0.01), and the lowest mean number of vasospastic vessels per rat ( p = 0.02). TDCS influences the vasospasm incidence in an SAH-model in rats, where cathodal-tDCS was associated with a lower vasospasm incidence and severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.