A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best means of disease control is plant resistance, but the identification of genes that promote resistance has been limited by the subjective quantification of disease, which is typically scored by the human eye. We hypothesized that image-based quantification of disease phenotypes would enable the identification of new disease resistance loci. We tested this using the interaction between tomato and Ralstonia solanacearum , a soilborne pathogen that causes bacterial wilt disease. We acquired over 40,000 time-series images of disease progression in a tomato recombinant inbred line population, and developed an image analysis pipeline providing a suite of ten traits to quantify wilt disease based on plant shape and size. Quantitative trait loci (QTL) analyses using image-based phenotyping identified QTL that were both unique and shared compared with those identified by human assessment of wilting. When shared loci were identified, image-based phenotyping could detect some QTL several days earlier than human assessment. Thus, expanding the phenotypic space of disease with image-based phenotyping allowed both earlier detection and identified new genetic components of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.