A Neural integrated Fuzzy conTroller (NiF-T) which integrates the fuzzy logic representation of human knowledge with the learning capability of neural networks is developed for nonlinear dynamic control problems. NiF-T architecture comprises of three distinct parts: (1) Fuzzy logic Membership Functions (FMF), (2) a Rule Neural Network (RNN), and (3) an Output-Refinement Neural Network (ORNN). FMF are utilized to fuzzify sensory inputs. RNN interpolates the fuzzy rule set; after defuzzification, the output is used to train ORNN. The weights of the ORNN can be adjusted on-line to fine-tune the controller. In this paper, real-time implementations of autonomous mobile robot navigation and multirobot convoying behavior utilizing the NiF-T are presented. Only five rules were used to train the wall following behavior, while nine were used for the hall centering. Also, a robot convoying behavior was realized with only nine rules. For all of the described behaviors-wall following, hall centering, and convoying, their RNN's are trained only for a few hundred iterations and so are their ORNN's trained for only less than one hundred iterations to learn their parent rule sets.
Accurate and efficient monitoring of dynamically changing environments is one of the most important requirements for visual surveillance systems. This paper describes the development of an integrated system for this monitoring purpose. The system consists of multiple omnidirectional vision sensors and was developed to address two specific surveillance tasks: (1) robust tracking and profiling of human activities;(2) dynamic synthesis of virtual views for observing the environment from arbitrary vantage points. q
Abstract. In this paper we present a set of novel methods for image-based modeling using omnidirectional vision sensors. The basic idea is to directly and efficiently acquire plenoptic representations by using omnidirectional vision sensors. The three methods, in order of increasing complexity, are direct memorization, discrete interpolation, and smooth interpolation. Results of these methods are compared visually with ground-truth images taken from a standard camera walking along the same path. The experimental results demonstrate that our methods are successful at generating high-quality virtual images. In particular, the smooth interpolation technique approximates the plenoptic function most closely. A comparative analysis of the computational costs associated with the three methods is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.