Activating mutations in the neuroblastoma rat sarcoma viral oncogene homolog (NRAS) gene are common genetic events in malignant melanoma being found in 15-25% of cases. NRAS is thought to activate both mitogen activated protein kinase (MAPK) and PI3K signaling in melanoma cells. We studied the influence of different components on the MAP/extracellular signal-regulated (ERK) kinase (MEK) and PI3K/mammalian target of rapamycin (mTOR)-signaling cascade in NRAS mutant melanoma cells. In general, these cells were more sensitive to MEK inhibition compared with inhibition in the PI3K/ mTOR cascade. Combined targeting of MEK and PI3K was superior to MEK and mTOR 1,2 inhibition in all NRAS mutant melanoma cell lines tested, suggesting that PI3K signaling is more important for cell survival in NRAS mutant melanoma when MEK is inhibited. However, targeting of PI3K/mTOR 1,2 in combination with MEK inhibitors is necessary to effectively abolish growth of NRAS mutant melanoma cells in vitro and regress xenografted NRAS mutant melanoma. Furthermore, we showed that MEK and PI3K/mTOR 1,2 inhibition is synergistic. Expression analysis confirms that combined MEK and PI3K/mTOR 1,2 inhibition predominantly influences genes in the rat sarcoma (RAS) pathway and growth factor receptor pathways, which signal through MEK/ERK and PI3K/mTOR, respectively. Our results suggest that combined targeting of the MEK/ERK and PI3K/mTOR pathways has antitumor activity and might serve as a therapeutic option in the treatment of NRAS mutant melanoma, for which there are currently no effective therapies.O ncogenic mutations in codons 12, 13, or 61 of the rat sarcoma (RAS) family of small GTPases, Kirsten rat sarcoma viral oncogene homolog (KRAS), Harvey rat sarcoma viral oncogene homolog (HRAS), and neuroblastoma RAS viral oncogene homolog (NRAS) occur in approximately one-third of all human cancers with NRAS mutations found in about 15-20% of melanomas (1-7). Mutated RAS proteins activate signaling pathways that promote the cell division cycle and cell growth and suppress apoptosis. Small interfering RNA (siRNA)-mediated depletion of NRAS in melanoma cell lines inhibits proliferation and renders cells sensitive to chemotherapy, making mutant NRAS and its signaling effectors relevant targets for melanoma therapy (8, 9). Efforts at developing therapeutics that inhibit mutant RAS directly have so far not been successful. The high affinity of RAS for GTP and the high concentrations of GTP intracellularly has meant that the identification of small molecules, which selectively prevent accumulation of RAS-GTP, has not been possible (10). Targeting mutant NRAS with siRNA is still limited to preclinical models because of the significant challenge in delivering antisense oligonucleotides in vivo. The response of NRAS mutant melanoma and other melanomas to various chemotherapeutic regiments has been very scarce with only 6% of patients responding (11). Alternatively, farnesyltransferase inhibitors (FTIs) were thought to inhibit RAS activation by blocking farnesy...
Background BRAF and MEK inhibitors frequently cause cutaneous adverse events. Objective To investigate the cutaneous safety profile of BRAF inhibitors versus BRAF- and MEK-inhibitor combination regimens. Methods We performed a retrospective cohort study, collecting data from 44 melanoma patients treated either with BRAF inhibitors (vemurafenib or dabrafenib) or BRAF- and MEK- inhibitor combination regimens (vemurafenib+cobimetinib or dabrafenib+trametinib). Patient characteristics, as well as the occurrence and severity of cutaneous adverse events are described. Results The development of cutaneous adverse events was significantly less frequent (p=0.012) and occurred after longer treatment time (p=0.025) in patients treated with BRAF- and MEK-inhibitor combination regimen compared to patients treated with BRAF inhibitor monotherapy. Among patients who received both BRAF inhibitor treatment and the combination of BRAF- and MEK-inhibitor at different time points during their treatment course, the development of squamous cell carcinoma or keratoacanthoma was significantly less frequent when they received the combination regimen (p=0.008). Patients receiving vemurafenib developed more cutaneous adverse events (p=0.001) and in particular more photosensitivity (p=0.010) than patients who did not. Limitations Limited number of patients. Conclusion Combination regimen with BRAF- and MEK-inhibitors shows fewer cutaneous adverse events and longer cutaneous adverse event-free interval compared to BRAF inhibitor monotherapy.
Patient preference has shifted from face-to-face visit to discussion over the telephone because of a desire for rapid notification. Experience with online portal delivery of results favorably inclined patients toward that modality. We recommend that patients be queried regarding their notification preference on the biopsy consent form.
A retroviral vector-mediated gene transfer system was used to introduce m gamma-IFN and h gamma-IFN genes into mouse and human tumor cells, respectively. Murine tumor cell lines and primary human melanoma tumor cells were successfully transduced with gamma-IFN vector, and these transduced cells secreted measurable levels of biologically active m gamma-IFN and h gamma-IFN, respectively. Both murine and human tumor cell lines that expressed gamma-IFN exhibited increased surface expression of HLA class I antigens when tested by Western blot and FACS analysis. gamma-IFN--transduced human melanoma cells were more active in stimulating tumor-specific cytolytic activity of CTLs from melanoma patients in vitro. m gamma-IFN--transduced tumor cells were substantially less tumorigenic than the corresponding parent tumor cell lines in immune-competent mice. In addition, injection of m gamma-IFN--transduced tumor cells resulted in activation of tumor-specific CTL in vivo. We plan to use gamma-IFN--transduced autologous tumor cells to boost host immune responses as a potential therapy for human melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.