Molecular junctions offer unique opportunities for controlling charge transport on the atomic scale and for studying energy conversion. For example, quantum interference effects in molecular junctions have been proposed as an avenue for highly efficient thermoelectric power conversion at room temperature. Toward this goal, we investigated the effect of quantum interference on the thermoelectric properties of molecular junctions. Specifically, we employed oligo(phenylene ethynylene) (OPE) derivatives with a para-connected central phenyl ring ( para-OPE3) and meta-connected central ring ( meta-OPE3), which both covalently bind to gold via sulfur anchoring atoms located at their ends. In agreement with predictions from ab initio modeling, our experiments on both single molecules and monolayers show that meta-OPE3 junctions, which are expected to exhibit destructive interference effects, yield a higher thermopower (with ∼20 μV/K) compared with para-OPE3 (with ∼10 μV/K). Our results show that quantum interference effects can indeed be employed to enhance the thermoelectric properties of molecular junctions.
We provide a simple set of rules for predicting interference effects in off-resonant transport through single molecule junctions. These effects fall into two classes, showing, respectively, an odd or an even number of nodes in the linear conductance within a given molecular charge state, and we demonstrate how to decide the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by tunneling on and off the molecule from same or different sublattices. More generally, we investigate a range of smaller molecules by means of exact diagonalization combined with a perturbative treatment of the molecule-lead tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions interference causes no transmission nodes, but we argue that it may lead to a nonstandard gate dependence of the zero-bias Kondo resonance.
Quantum interference, be it destructive or constructive, has a substantial influence on the magnitude of molecular conductance and consequently there is significant interest in predicting these effects. It is commonly thought that cross-conjugated paths result in suppressed conductance due to destructive quantum interference. Using Hückel theory and DFT calculations we investigate systems that break this cross-conjugation rule of thumb. We predict and rationalize how a class of conjugated molecules containing closed loops can exhibit destructive interference despite being linearly conjugated and exhibit constructive interference despite being cross-conjugated. The arguments build on the graphical rules derived by Markussen et al. 1 and the hitherto neglected effects of closed loops in the molecular structure. Finally, we identify the 1,3 connected Azulene molecule as belonging to the closed-loop class and argue that this explains recent measurements of its electrical conductance.
Molecular electronics offers unique scientific and technological possibilities, resulting from both the nanometre scale of the devices and their reproducible chemical complexity. Two fundamental yet different effects, with no classical analogue, have been demonstrated experimentally in single-molecule junctions: quantum interference due to competing electron transport pathways, and the Kondo effect due to entanglement from strong electronic interactions. Here we unify these phenomena, showing that transport through a spin-degenerate molecule can be either enhanced or blocked by Kondo correlations, depending on molecular structure, contacting geometry and applied gate voltages. An exact framework is developed, in terms of which the quantum interference properties of interacting molecular junctions can be systematically studied and understood. We prove that an exact Kondo-mediated conductance node results from destructive interference in exchange-cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/nodes are demonstrated for prototypical molecular junctions, illustrating the intricate interplay of quantum effects beyond the single-orbital paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.