Polar environments like the high-Arctic Kongsfjord are characterized by pronounced seasonality leading to strong variations in primary production. Food sources are particularly scarce during winter. Herbivorous krill, such as the arcto-boreal Thysanoessa inermis, are key components in the ecosystem of Kongsfjord and strongly rely on phytoplankton as a food source. During the polar night such species must therefore be adapted to survive long periods without significant nutritional input. We investigated physiological mechanisms and the allocation of energy resources to try to explain how T. inermis manages to survive the Arctic winter. Adult specimens caught in late summer were kept under starvation conditions for 28 d. Changes in metabolic rates (respiration and excretion) and biochemical composition (protein, lipid and fatty acid analyses) were monitored. In contrast to the Antarctic krill Euphausia superba and the subtropical E. hanseni, the arcto-boreal species did not reduce metabolism but utilized lipid reserves for survival. Assessed from total lipid stores and energy demand, the potential survival period was estimated at 63 d without food uptake, which is not sufficient to survive the entire winter. Results were compared to specimens that overwintered in situ and were discussed in relation to other euphausiids. In conclusion, T. inermis is well adapted to survive the Arctic winter provided that alternative food sources are available, but has a different strategy to cope with starvation than krill species from other latitudes.
Recent studies have indicated a metabolic temperature sensitivity in both the arcto-boreal krill species Thysanoessa inermis and Thysanoessa raschii that may determine these species' abundance and population persistence at lower latitudes (up to 40° N). T. inermis currently dominates the krill community in the Barents Sea and in the high Arctic Kongsfjord. We aimed to increase the knowledge on the upper thermal limit found in the latter species by estimating the CT value (19.7 °C) (critical temperature at which 50 % of animals are reactive) and by linking metabolic rate measurements with molecular approaches. Optical oxygen sensors were used to measure respiration rates in steps of 2 °C (from 0 to 16 °C). To follow the temperature-mediated mechanisms of passive response, i.e., as a proxy for molecular stress, molecular chaperone heat shock protein 70 (Hsp70) sequences were extracted from a transcriptome assembly, and the gene expression kinetics were monitored during an acute temperature exposure to 6 or 10 °C with subsequent recovery at 4 °C. Our results showed upregulation of hsp70 genes, especially the structurally constitutive and mitochondrial isoforms. These findings confirmed the temperature sensitivity of T. inermis and showed that the thermal stress took place before reaching the upper temperature limit estimated by respirometry at 12 °C. This study provides a baseline for further investigations into the thermal tolerances of arcto-boreal Thysanoessa spp. and comparisons with other krill species under different climatic regimes, especially Antarctica.
Rates of respiration and ammonia excretion of Euphausia hanseni and Nematoscelis megalops were determined experimentally at four temperatures representative of conditions encountered by these euphausiid species in the northern Benguela upwelling environment. The respiration rate increased from 7.7 μmol O 2 h -1 g ww -1 at 5 °C to 18.1 μmol O 2 h -1 g ww -1 at 20 °C in E. hanseni and from 7.0 μmol O 2 h -1 g ww -1 (5 °C) to 23.4 μmol O 2 h -1 g ww -1 (20 °C) in N. megalops. The impact of temperature on oxygen uptake of the two species differed significantly. Nematoscelis megalops showed thermal adaptations to temperatures between 5 °C and 10 °C (Q 10 = 1.9) and metabolic constraint was evident at higher temperatures (Q 10 = 2.6). In contrast, E. hanseni showed adaptations to temperatures of 10-20 °C (Q 10 = 1.5) and experienced metabolic depression below 10 °C (Q 10 = 2.6). Proteins were predominantly metabolised by E. hanseni in contrast to lipids by N. megalops. Carbon demand of N. megalops between 5 and 15 °C was lower than in E. hanseni versus equal food requirements at 20 °C. It is concluded that the two species display different physiological adaptations, based on their respective temperature adaptations, which are mirrored in their differential vertical positioning in the water column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.