The homotypic fusion of sea urchin egg cortical vesicles (CV) is a system in which to correlate the biochemistry and physiology of membrane fusion. Homologues of vesicle-associated membrane protein (VAMP), syntaxin, and SNAP-25 were identified in CV membranes. A VAMP and syntaxin immunoreactive band at a higher apparent molecular mass (Ϸ70 kDa) was detected; extraction and analysis confirmed that the band contained VAMP, SNAP-25, and syntaxin. This complex was also identified by immunoprecipitation and by sucrose gradient analysis. VAMP in the complex was insensitive to proteolysis by tetanus toxin. All criteria identify the SNARE complex as that described in other secretory systems. Complexes exist pre-formed on individual CV membranes and form between contacting CV. Most notably, CV SNARE complexes are disrupted in response to [Ca 2؉ ] free that trigger maximal fusion. N-Ethylmaleimide, which blocks fusion at or before the Ca 2؉ -triggering step, blocks complex disruption by Ca
2؉. However, disruption is not blocked by lysophosphatidylcholine, which transiently arrests a late stage of fusion. Since removal of lysophosphatidylcholine from Ca 2؉ -treated CV is known to allow fusion, complex disruption occurs independently from the membrane fusion step. As Ca 2؉ disrupts rather than stabilizes the complex, the presumably coiled-coil SNARE interactions are not needed at the time of fusion. These findings rule out models of fusion in which SNARE complex formation goes to completion ("zippers-up") after Ca 2؉ binding removes a "fusion-clamp."
The vesicle-associated membrane proteins [VAMPs; vesicle SNAP receptors (v-SNAREs)] present on GLUT4-enriched vesicles prepared from rat adipose cells [Cain, Trimble and Lienhard (1992) J. Biol. Chem. 267, 11681-11684] have been identified as synaptobrevin 2 (VAMP 2) and cellubrevin (VAMP 3) by using isoform-specific antisera. Additional antisera identify syntaxins 2 and 4 as the predominant target membrane SNAP receptors (t-SNAREs) in the plasma membranes (PM), with syntaxin 3 at one-twentieth the level. Syntaxins 2 and 4 are enriched 5-10-fold in PM compared with low-density microsomes (LDM). Insulin treatment results in an 11-fold increase in immunodetectable GLUT4 in PM and smaller (approx. 2-fold) increases in VAMP 2 and VAMP 3, whereas the subcellular distributions of the syntaxins are not altered by insulin treatment. To determine which of the SNAP receptors (SNAREs) in PM might participate in SNARE complexes with proteins from GLUT4 vesicles, complexes were immunoprecipitated with anti-myc antibody from solubilized membranes after the addition of myc-epitope-tagged N-ethylmaleimide-sensitive fusion protein (NSF) and recombinant alpha-soluble NSF attachment protein (alpha-SNAP). These complexes contain VAMPs 2 and 3 and syntaxin 4, but not syntaxins 2 or 3. Complex formation requires ATP and is disrupted by ATP hydrolysis. When all membrane fractions are prepared from basal cells, few or no VAMPs and no syntaxin 4 are immunoprecipitated in SNARE complexes obtained from LDM alone (or from immunoisolated GLUT4 vesicles). The content of syntaxin 4 depends on the presence of PM, and participation of VAMPs 2 and 3 is enhanced 4-6-fold by the addition of solubilized GLUT4 vesicles to PM. The latter increase is greater than can be explained by the 2-fold higher levels of VAMPs added to the reaction mixture. When all membrane fractions are prepared from insulin-stimulated cells, SNARE complexes formed from PM alone contain similar levels of syntaxin 4 but 5-6-fold higher levels of VAMPs 2 and 3 compared with PM alone from basal cells. Addition of GLUT4 vesicle proteins to PM from insulin-treated cells results in a further 2-fold increase in VAMP 2 recovered in SNARE complexes. Therefore the VAMPs in PM of insulin-treated but not basal cells, and in GLUT4-vesicles from cells in either condition, are in a form that readily forms a SNARE complex with PM t-SNAREs and NSF. Insulin seems to activate PM and/or GLUT4 vesicles so as to increase the efficiency of SNARE complex formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.