Antimicrobial peptides (AMPs) have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.
BackgroundWe intended to evaluate diagnostic utility of a targeted gene sequencing by using next generation sequencing (NGS) panel in patients with intractable early-onset epilepsy (EOE) and find the efficient analytical step for increasing the diagnosis rate.MethodsWe assessed 74 patients with EOE whose seizures started before 3 years of age using a customized NGS panel that included 172 genes. Single nucleotide variants (SNVs) and exonic and chromosomal copy number variations (CNVs) were intensively examined with our customized pipeline and crosschecked with commercial or pre-built software. Variants were filtered and prioritized by in-depth clinical review, and finally classified according to the American College of Medical Genetics and Genomics guidelines. Each case was further discussed in a monthly consensus meeting that included the participation of all laboratory personnel, bioinformaticians, geneticists, and clinicians.ResultsThe NGS panel identified 28 patients (37.8%) with genetic abnormalities; 25 patients had pathogenic or likely pathogenic SNVs in 17 genes including SXTBP1 (n = 3), CDKL5 (n = 2), KCNQ2 (n = 2), SCN1A (n = 2), SYNGAP1 (n = 2), GNAO1 (n = 2), KCNT1 (n = 2), BRAT1, WWOX, ZEB2, CHD2, PRICKLE2, COL4A1, DNM1, SCN8A, MECP2, SLC9A6 (n = 1). The other 3 patients had pathogenic CNVs (2 duplications and 1 deletion) with varying sizes (from 2.5 Mb to 12 Mb). The overall diagnostic yield was 37.8% after following our step-by-step approach for clinical consensus.ConclusionsNGS is a useful diagnostic tool with great utility for patients with EOE. Diagnostic yields can be maximized with a standardized and team-based approach.Electronic supplementary materialThe online version of this article (10.1186/s12920-018-0320-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.