Purpose
To measure needle insertion force and change in intraocular pressure (IOP) in real-time during intravitreal injection (IVI). The effects of needle size, insertion speed, and injection rate to IOP change were investigated.
Methods
Needle insertion and fluid injection were performed on 90 porcine eyeballs using an automatic IVI device. The IVI conditions were divided according to needle sizes of 27-gauge (G), 30G, and 33G; insertion speeds of 1, 2, and 5 mm/s; and injection rates of 0.01, 0.02, and 0.05 mL/s. Insertion force and IOP were measured in real-time using a force sensor and a pressure transducer.
Results
The peak IOP was observed when the needle penetrated the sclera; the average IOP elevation was 96.3, 67.1, and 59.4 mmHg for 27G, 30G, and 33G needles, respectively. An increase in insertion speed caused IOP elevation at the moment of penetration, but this effect was reduced as needle size decreased: 109.8–85.9 mmHg in 27G for 5–1 mm/s (p = 0.0149) and 61.8–60.7 mmHg in 33G for 5–1 mm/s (p = 0.8979). Injection speed was also related to IOP elevation during the stage of drug injection: 16.65 and 11.78 mmHg for injection rates of 0.05 and 0.01 mL/s (p < 0.001).
Conclusion
The presented data offers an understanding of IOP changes during each step of IVI. Slow needle insertion can reduce IOP elevation when using a 27G needle. Further, the injection rate must be kept low to avoid IOP elevations during the injection stage.
In penetrating keratoplasty (PKP), the proper corneal suture placement is very important for successful transplantation and restoring functional vision. Generating sutures with accurate depth is difficult for the surgeon because of the tissue’s softness, lack of depth information, and hand tremors. In this paper, an automatic cornea grasping device is proposed, which detects when the device reaches the target suture depth. When the device reaches the target depth, the device rapidly grasps the cornea to prevent error induced by human hand tremors. In the paper, the performance of the proposed sensor, the actuator, and the device are experimentally verified with ex vivo experiment. The result showed that the proposed device could enhance the accuracy and precision of the corneal suture depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.