This paper reports the results of a numerical study on carrier injection and exciton transport in an organic light emitting diode (OLED) structure based on tris (8-hydroxyquinolinato) aluminum (Alq3). Because charge accumulation at the interfaces between the emission layer (EML) and transport layer are believed to increase the recombination rate, which also increases the exciton density, a numerical study was performed on the effect of inserting an EML in the bilayer structure. In the first case considered, the lowest unoccupied molecular orbital (LUMO) of the EML was aligned with the LUMO of the hole transport layer (HTL), whereas the highest occupied molecular orbital (HOMO) of the EML was aligned with the HOMO of the electron transport layer (ETL). In the second case, the LUMO of the EML was aligned with the LUMO of the ETL and the HOMO of the EML was aligned with the HOMO of the HTL. In case of a charge-blocking device, most of the recombination appeared to occur at both edges of the EML because the electric field exhibited a peak in these areas. On the other hand, in the case of the charge-confining device, the electric field was confined at the interface between the EML and ETL. This paper also discussed the effect of the insertion of a doping layer as transport layer.
Epoxy resins are widely used in structural repairing and strengthening work, but most of them typically require primer works and are vulnerable to water. To overcome such limits, a non-shrinkage chemical grout (NCG) has been developed in this research, which provides a strong chemical bond strength utilizing Silanol/Si-OH. The material characteristics of the NCG were investigated from experiments and the applications of non-shrinkage chemical grout were also provided. The experimental investigation indicates that NCG has much improved performance compared to a typical epoxy product, which implies that the NCG can be widely used for repairing and strengthening work.
We report our simulation study on the charge transport characteristic of the multi-layer structure for organic light emitting diodes (OLEDs). We performed a numerical simulation on a multilayer structure comprising a hole transport layer (HTL), an emission layer (EML), and an electron transport layer (ETL) between both electrodes. The material of the HTL is TPD (N,N'-Bis (3-methylphenyl)-N,N'-bis(phenyl) benzidine), and the ETL includes Alq3 (Tris (8-hyroxyquinolinato) aluminium). Here, we investigated the parameters such as recombination rates which influence the efficiency of the charge transport between layers in bilayer OLEDs. We also analyzed a transient response during the turn on/off period and the carrier transport in accordance with the variation of the injection barrier and applied voltage. In addition, our numerical simulation revealed that the insertion of the EML affects the photonic characteristics in bilayer structure and also the efficiency due to the difference in the internal barrier height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.