The production of guanine radicals in DNA via the flash−quench technique is shown to cause the formation of covalent adducts between DNA and histone protein. In the flash−quench experiment, the DNA-bound intercalator Ru(phen)2dppz2+ (phen = 1,10-phenanthroline, dppz = dipyridophenazine) is excited with 442 nm light and quenched oxidatively by Co(NH3)5Cl2+, methyl viologen (MV2+), or Ru(NH3)6 3+ to produce Ru(phen)2dppz3+, a strong oxidant (+1.6 V) that can oxidize a nearby guanine base (+1.3 V). The guanine radical thus produced is vulnerable to nucleophilic attack and can react with amino acid side chains to form DNA−protein cross-links. Evidence for DNA−protein cross-linking was provided by the chloroform extraction assay, a filter binding assay, and gel electrophoretic analysis. After flash−quench treatment, pUC19 plasmid DNA undergoes a dramatic decrease in mobility that is reversed upon digestion with proteinase K, as seen by agarose gel electrophoresis. In polyacrylamide gel electrophoresis (SDS-PAGE) experiments, the histone protein shows similar mobility shifts. Cross-linking is observed with poly(dG-dC) and mixed sequence DNA, but not with poly(dA-dT), indicating that the reaction requires guanine bases. Measurements of emission quenching indicate that for a given quencher, the amount of cross-linking is correlated to the amount of quenching. When comparing different quenchers, however, the amount of cross-linking is inversely related to the amount of quenching and decreases in the order Co(NH3)5Cl2+ > MV2+ > Ru(NH3)6 3+. This trend in cross-linking correlates instead with the lifetime of the guanine radical measured by transient absorption spectroscopy, and suggests that the cross-linking reaction requires > 100 μs. These results demonstrate that the flash−quench technique is an effective approach for the study of covalent adducts between DNA and protein formed as a result of guanine oxidation, and suggest one possible fate for oxidatively damaged DNA in vivo.
DNA-protein cross-links form when guanine undergoes a 1-electron oxidation in a flash-quench experiment, and the importance of reactive oxygen species, protein, and photosensitizer is examined here. In these experiments, a strong oxidant produced by oxidative quenching of a DNA-bound photosensitizer generates an oxidized guanine base that reacts with protein to form the covalent adduct. These cross-links are cleaved by hot piperidine and are not the result of reactive oxygen species, since neither a hydroxyl radical scavenger (mannitol) nor oxygen affects the yield of DNA-histone cross-linking, as determined via a chloroform extraction assay. The cross-linking yield depends on protein, decreasing as histone > cytochrome c > bovine serum albumin. The yield does not depend on the cytochrome oxidation state, suggesting that reduction of the guanine radical by ferrocytochrome c does not compete effectively with cross-linking. The photosensitizer strongly influences the cross-linking yield, which decreases in the order Ru(phen)(2)dppz(2+) [phen = 1,10-phenanthroline; dppz = dipyridophenazine] > Ru(bpy)(3)(2+) [bpy = 2,2'-bipyridine] > acridine orange > ethidium, in accordance with measured oxidation potentials. A long-lived transient absorption signal for ethidium dication in poly(dG-dC) confirms that guanine oxidation is inefficient for this photosensitizer. From a polyacrylamide sequencing gel of a (32)P-labeled 40-mer, all of these photosensitizers are shown to damage guanines preferentially at the 5' G of 5'-GG-3' steps, consistent with a 1-electron oxidation. Additional examination of ethidium shows that it can generate cross-links between histone and plasmid DNA (pUC19) and that the yield depends on the quencher. Altogether, these results illustrate the versatility of the flash-quench technique as a way to generate physiologically relevant DNA-protein adducts via the oxidation of guanine and expand the scope of such cross-linking reactions to include proteins that may associate only transiently with DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.