A primary aim of microbial ecology is to determine patterns and drivers of community distribution, interaction, and assembly amidst complexity and uncertainty. Microbial community composition has been shown to change across gradients of environment, geographic distance, salinity, temperature, oxygen, nutrients, pH, day length, and biotic factors 1-6 . These patterns have been identified mostly by focusing on one sample type and region at a time, with insights extra polated across environments and geography to produce generalized principles. To assess how microbes are distributed across environments globally-or whether microbial community dynamics follow funda mental ecological 'laws' at a planetary scale-requires either a massive monolithic cross environment survey or a practical methodology for coordinating many independent surveys. New studies of microbial environments are rapidly accumulating; however, our ability to extract meaningful information from across datasets is outstripped by the rate of data generation. Previous meta analyses have suggested robust gen eral trends in community composition, including the importance of salinity 1 and animal association 2 . These findings, although derived from relatively small and uncontrolled sample sets, support the util ity of meta analysis to reveal basic patterns of microbial diversity and suggest that a scalable and accessible analytical framework is needed.The Earth Microbiome Project (EMP, http://www.earthmicrobiome. org) was founded in 2010 to sample the Earth's microbial communities at an unprecedented scale in order to advance our understanding of the organizing biogeographic principles that govern microbial commu nity structure 7,8 . We recognized that open and collaborative science, including scientific crowdsourcing and standardized methods 8 , would help to reduce technical variation among individual studies, which can overwhelm biological variation and make general trends difficult to detect 9 . Comprising around 100 studies, over half of which have yielded peer reviewed publications (Supplementary Table 1), the EMP has now dwarfed by 100 fold the sampling and sequencing depth of earlier meta analysis efforts 1,2 ; concurrently, powerful analysis tools have been developed, opening a new and larger window into the distri bution of microbial diversity on Earth. In establishing a scalable frame work to catalogue microbiota globally, we provide both a resource for the exploration of myriad questions and a starting point for the guided acquisition of new data to answer them. As an example of using this Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of r...
Summary The bacteria that colonize humans and our built environments have the potential to influence our health. Microbial communities associated with seven families and their homes over six weeks were assessed, including three families that moved home. Microbial communities differed significantly among homes, and the home microbiome was largely sourced from humans. The microbiota in each home were identifiable by family. Network analysis identified humans as the primary bacterial vector, and a Bayesian method significantly matched individuals to their dwellings. Draft genomes of potential human pathogens were observed on a kitchen counter could be matched to the hands of occupants. Following a house move, the microbial community in the new house rapidly converged on the microbial community of the occupants’ former house, suggesting rapid colonization by the family’s microbiota.
Cultivation-independent surveys of microbial diversity have revealed many bacterial phyla that lack cultured representatives. These lineages, referred to as candidate phyla, have been detected across many environments. Here, we deeply sequenced microbial communities from acetate-stimulated aquifer sediment to recover the complete and essentially complete genomes of single representatives of the candidate phyla SR1, WWE3, TM7, and OD1. All four of these genomes are very small, 0.7 to 1.2 Mbp, and have large inventories of novel proteins. Additionally, all lack identifiable biosynthetic pathways for several key metabolites. The SR1 genome uses the UGA codon to encode glycine, and the same codon is very rare in the OD1 genome, suggesting that the OD1 organism could also transition to alternate coding. Interestingly, the relative abundance of the members of SR1 increased with the appearance of sulfide in groundwater, a pattern mirrored by a member of the phylum Tenericutes. All four genomes encode type IV pili, which may be involved in interorganism interaction. On the basis of these results and other recently published research, metabolic dependence on other organisms may be widely distributed across multiple bacterial candidate phyla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.