Abstract-Bone morphogenetic proteins (BMPs) are involved in embryonic and adult blood vessel formation in health and disease. BMPER (BMP endothelial cell precursor-derived regulator) is a differentially expressed protein in embryonic endothelial precursor cells. In earlier work, we found that BMPER interacts with BMPs and when overexpressed antagonizes their function in embryonic axis formation. In contrast, in a BMPER-deficient zebrafish model, BMPER behaves as a BMP agonist. Furthermore, lack of BMPER induces a vascular phenotype in zebrafish that is driven by disarray of the intersomitic vasculature. Here, we investigate the impact of BMPER on endothelial cell function and signaling and elucidate its role in BMP-4 function in gain-and loss-of-function models. As shown by Western blotting and immunocytochemistry, BMPER is an extracellular matrix protein expressed by endothelial cells in skin, heart, and lung. We show that BMPER is a downstream target of FoxO3a and consistently exerts activating effects on endothelial cell sprouting and migration in vitro and in vivo. Accordingly, when BMPER is depleted from endothelial cells, sprouting is impaired. In terms of BMPER related intracellular signaling, we show that BMPER is permissive and necessary for Smad 1/5 phosphorylation and induces Erk1/2 activation. Most interestingly, BMPER is necessary for BMP-4 to exert its activating role in endothelial function and to induce Smad 1/5 activation. Vice versa, BMP-4 is necessary for BMPER activity. Taken together, BMPER is a dose-dependent endothelial cell activator that plays a unique and pivotal role in fine-tuning BMP activity in angiogenesis. Key Words: BMPER Ⅲ bone morphogenetic proteins Ⅲ vascular biology Ⅲ endothelial cell function Ⅲ signaling A ngiogenesis is a basic biological event that is involved in embryonic development but also in adult physiological and pathological conditions, such as inflammation, tumor growth, atherosclerosis, or response to ischemia. This process depends on the orchestrated function of intra-and extracellular proteins, many of which are conserved from embryonic development through adulthood. 1 Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)- superfamily. Originally, they have been identified by their ability to induce ectopic bone formation and have been extensively studied during embryonic development, in which they control axis formation and organogenesis. Today, more than 20 BMP-related proteins and a number of BMP modulating proteins have been identified. 2 A growing body of evidence suggests that they serve as important regulators in vascular development and disease. 3 BMPs are extracellular proteins that signal through cell surface complexes of type I and type II serine/threonine kinase receptors. On activation, the receptors mediate intracellular signaling mainly through the Smad 1/5 transcription factors. BMP signaling is regulated at several levels: activity of R-Smads (1/5) is modulated by facilitating (eg, Smad 4) or inhibitory (eg,...
SummaryThe cloning of abiotic stress-inducible genes from the moss Physcomitrella patens led to the identification of the gene PpTSPO1, encoding a protein homologous to the mammalian mitochondrial peripheral-type benzodiazepine receptor and the bacterial tryptophane-rich sensory protein. This class of proteins is involved in the transport of intermediates of the tetrapyrrole biosynthesis pathway. Like the mammalian homologue, the PpTSPO1 protein is localized to mitochondria. The generation of PpTSPO1-targeted moss knock-out lines revealed an essential function of the gene in abiotic stress adaptation. Under stress conditions, the PpTSPO1 null mutants show elevated H 2 O 2 levels, enhanced lipid peroxidation and cell death, indicating an important role of PpTSPO1 in redox homeostasis. We hypothesize that PpTSPO1 acts to direct porphyrin precursors to the mitochondria for heme formation, and is involved in the removal of photoreactive tetrapyrrole intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.