To broaden participation in computing we need to look beyond traditional domains of inquiry and expertise. We present results from a demonstration project in which interactive journalism was used to infuse computational thinking into the standard curriculum and regular classroom experience at a middle school with a diverse population. Outcomes indicate that we were able to develop positive attitudes about computational thinking and programming among students and teachers who did not necessarily view themselves as "math types." By partnering with language arts, technology and math teachers at Fisher Middle School, Ewing New Jersey, we introduced the isomorphism between the journalistic process and computational thinking to 7th and 8th graders. An intense summer institute, first with the teachers and then with students recruited from the school, immersed them in the "newsroom of the future" where they researched and wrote news stories, shot and edited video, and developed procedural animations in Scratch to support their storylines. An afterschool club sustained the experience. The teachers adapted interactive journalism and Scratch programming to enrich standard language arts curriculum and are infusing computational thinking in classroom experiences throughout the school.
As the need for multidisciplinary computing education continues to increase, consideration for distributed expertise will become critical to implementing a successful curriculum. A model of cooperative expertise is presented in which faculty maintain responsibility for their own course, creating and evaluating assignments for their students that support learning in their colleagues' courses as well. We present outcomes of an experiment to implement this model at two geographically separated institutions through three courses (two at one institution, one at the other), by faculty in computer science, media and English. Results reported include faculty analysis of student achievement in each course and student surveys of attitudes toward multidisciplinary collaboration. Overall, student learning and attitudes are enhanced by the collaborative experience.
Which pedagogical techniques better engage computer science (CS) students in computing for social good? We examine this question with students enrolled in classes using the Collaborating Across Boundaries to Engage Undergraduates in Computational Thinking (CABECT) pedagogical model, that pairs CS and non-CS courses with a community partner to propose solutions to a local problem. Pre- and post-tests of self-assessed concerns about civic responsibility, global responsibility, and local civic efficacy were administered to the students in a three-year long pedagogical experiment, which paired five CS courses with five journalism courses. While CS students were not statistically different from their journalism peers in pre-test measures of social and global responsibility, they lagged behind in local efficacy. In the posttest, CS students had significantly increased their sense of local efficacy to the extent that they were statistically indistinguishable from journalism students. Community-engaged learning projects, such as the one in the CABECT model, show great potential for attracting students to computing for social good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.